Unimal : Unified Macro Language

Unimal 2.0

Application note 6

Compile-time sorting of symbolic constants

Documentation revision 2.00

Techniques:
Seamless integration of Unimal with the C language.
Complex compile-time algorithm implemented jointly by Unimal and C

MacroExpressions
http://www.macroexpressions.com

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal : Unified Macro Language 1

Table of contents

FOREWORD........uumtttieiisnseeesssssnsesesssssssessessssssssssesssssssssesssssssssesssnssessssssnnsesseesssnnnssens 1
A TARGET € SOLUTIONuuuueeieiissnsserssssssssessessssssssssssssssessessssnsssssssssnsssesssssnsesssesssnns 2
MAINTAINABILITY AND A UNIMAL IMPLEMENTATIONcctttiiissseeeresssnneeesssssnneneenns 4
BUT IT DOESN'T WORK! WHY? .eoiiiiiueeerisssnseerssssssssssssssssssssesssssssesssssssnsesessssnnsessssns 9
A BETTER C SOLUTION, USING TYPEDEFcccccvmeerrssssnsessessssnseesssssssssssssssnsessessses 10
IMPLEMENTATION OF THE NEW DESIGN IN UNIMAL......cccoosuerrrssnneesrssssnnnnsessssnns 11
Foreword

In this Application Note, we’ll see how Unimal can seamlessly integrate with C/C++
preprocessor (and the language proper) and promote project maintainability. This note
assumes that the reader is reasonably versed in the C language.

The example problem we are to work on is to sort, at compile time, several numbers given
symbolically (i.e., via C #define statements). This rules out the use of Unimal’s own
arithmetic capabilities because Unimal being language-independent is unaware of C
symbolic constants. Therefore, we can only use Unimal to generate the C source that will do
the sorting we want.

While the problem we’ll be solving is a simplified version of a real-world problem of
configuring an embedded log file system, the main point is that we can use Unimal to
extend the capabilities of the target language. The second point is that no project
maintainability is lost since the whole operation is fully automated.

The Note will be working on the following problem:

You have a few numbers made known as constant C expressions which may involve, say, a
sizeof operator, so they cannot be used in an #if statement. For instance,

#define SIZE_A sizeof(long)

#define SIZE_B sizeof(short)

#define SIZE_C sizeof(char[3])

The problem is to create, at compile time, a constant array of unique numbers in ascending
order and terminate it with one or more markers SIZE_BIG known to be greater than all

supplied numbers, where, for instance,
#define SIZE_BIG 999999

For the data we have in the example, and for a typical machine, we want to automatically
generate a statement equivalent to this:

const size_t sorted[] ={
SIZE_B,
SIZE_C,
SIZE_A,
SIZE_BIG

J§

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal : Unified Macro Language 2

Our plan is as follows.

As a first shot at the problem, we’ll see what a solution in plain C could look like. Of course,
we have to limit ourselves to compile-time initialization since we are to define a const
object.

Then, we will analyze whether it is reasonably maintainable. We will find that there will be
statements looking like complete gobbledygook that no-one should be asked to maintain.

Third, we will come up with well-maintainable Unimal code which would automatically
generate the C code that we want to have but do not want to maintain.

Fourth, we will test our solution on more data to sort and discover that a typical C compiler
fails to compile a perfectly good source file. We will analyze the cause of it and come up
with a different solution in C.

Finally, we will implement a maintenance-free Unimal code to generate the C solution that
works.

Examples for this Note are in the directory Samples\AppNotes\6.

A target C solution

A C solution we are suggesting is a compile-time bubble sort of the numbers.
On pass 1, we will find the minimum of all numbers:

Pass 1:

#define MIN_1 1 SIZE A

#define MIN_1 2 MIN(MIN_1 1, SIZE_B)
#define MIN_1 3 MIN(MIN_1 2, SIZE_C)

where, as usual,
#define MIN(a, b) (((2)<(b))?(a):(b))

Note that MIN_1 1, MIN_1 2, MIN_1 3 are all constant expressions and MIN_1 3 is the
minimum of all numbers.

On pass 2, we will find the minimum of all numbers not previously matched (i.e., equal to
MIN_1 3).

Pass 2:

#define MATCHED_1 1 (SIZE_A==MIN_1 3)

#define MIN_2_1 (MATCHED_1 1)?SIZE_BIG:SIZE_A)
#define MATCHED_1 2 (SIZE_B==MIN_1 3)

#define MIN_2_2 ((MATCHED_1_2)?MIN_2_1:MIN(MIN_2_1, SIZE_B))
#define MATCHED_1_3 (SIZE_C==MIN_1_3)
#define MIN_2_3 ((MATCHED_1_3)?MIN_2_2:MIN(MIN_2_2, SIZE_C))

This is how it works: MATCHED_1 »serves as an indicator of a number being already equal
to the minimum. MIN_2_1 is a terminal marker (SIZE_BIG) if the first number was
matched or that number otherwise. MIN_2 2 is MIN_2 1 if the second humber was
matched or the smaller of that number and MIN_2 1 otherwise. Similar goes for MIN_2_3.
It is easy to see that

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal : Unified Macro Language 3

« at least one of MATCHED_1 Xs non-zero
« MIN_2_3 is the second smallest number, unless all numbers are equal, in which case
MIN_2_3 is SIZE_BIG

Pass 3 takes, finally, a generic shape:

#define MATCHED 2 1 (MATCHED 1 _1 || (SIZE_A==MIN_2_ 3))
#define MIN_3_1 ((MATCHED_2_1)?SIZE_BIG:SIZE_A)

#define MATCHED 2 2 (MATCHED_1_2 || (SIZE_B==MIN_2_ 3))
#define MIN_3_2 ((MATCHED_2_2)?MIN_3_1:MIN(MIN_3_1, SIZE_B))
#define MATCHED_2_3 (MATCHED_1_3 || (SIZE_C==MIN_2_ 3))
#define MIN_3_3 ((MATCHED_2_3)?MIN_3_2:MIN(MIN_3_2, SIZE_C))

The only difference from pass 2 is that MATCHED _n_xs non-zero (true) if it was matched
on any pass before, i.e., if MATCHED_(n-1)_x was true OR it was matched on the previous
pass. It can be seen that
« at least two of MATCHED_1 »are true
« MIN_3_3 is the third smallest number, unless there are less than three unique
supplied nhumbers, in which case MIN_3_ 3 is SIZE_BIG

Now, we are in a position to define the array of unique supplied numbers in ascending
order, like
const size_t sorted[] ={

MIN_1_3,
MIN_2_3,
MIN_3_3,
SIZE_BIG
h

We can give our solution a more uniform look if we artificially define all MATCHED_0_ xo be
0. Here is our solution in C:

llpass 1

#define MATCHED_0_10

#define MIN_1_1 ((MATCHED_0O_1)?SIZE_BIG:SIZE_A)
#define MATCHED 0 20

#define MIN_1_2 ((MATCHED_0_2)?MIN_1_1:MIN(MIN_1_1, SIZE_B))
#define MATCHED 0 30

#define MIN_1_3 ((MATCHED_0_3)?MIN_1_2:MIN(MIN_1_2, SIZE_C))
llpass 2

#define MATCHED_1 1 (MATCHED_O_1 || (SIZE_A==MIN_1 _ 3))
#define MIN_2_1 ((MATCHED_1_1)?SIZE_BIG:SIZE_A)

#define MATCHED_1 2 (MATCHED_0 2 || (SIZE_B==MIN_1 3))
#define MIN_2_2 ((MATCHED_1_2)?MIN_2_1:MIN(MIN_2_1, SIZE_B))
#define MATCHED_1 3 (MATCHED_0_3 || (SIZE_C==MIN_1_ 3))
#define MIN_2_3 ((MATCHED_1_3)?MIN_2_2:MIN(MIN_2_2, SIZE_C))
/lpass 3

#define MATCHED_2 1 (MATCHED_1_1 || (SIZE_A==MIN_2_ 3))
#define MIN_3_1 ((MATCHED_2_1)?SIZE_BIG:SIZE_A)

#define MATCHED_2 2 (MATCHED_1_2 || (SIZE_B==MIN_2_ 3))
#define MIN_3_2 ((MATCHED_2_2)?MIN_3_1:MIN(MIN_3_1, SIZE_B))

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal : Unified Macro Language 4

#define MATCHED_2_3 (MATCHED_1_3 || (SIZE_C==MIN_2_ 3))
#define MIN_3_3 ((MATCHED_2_3)?MIN_3_2:MIN(MIN_3_2, SIZE_C))
/lresulting array
const size_t sorted[] ={

MIN_1_3,

MIN_2_3,

MIN_3_3,

SIZE_BIG

Maintainability and a Unimal implementation
Let’s assess maintainability of the C solution of the previous section.

The first problem is that the same number, like SIZE_A, is entered many times, so it is very
error-prone to, say, rename this symbol.

Second, the somewhat tricky yet similar definitions are very likely to be corrupted by a typo
or cut-n-paste operation.

Third, and worst, removing or adding a number, like some SIZE_D, will affect every pass
and the final definition of the array, which, incidentally, for four numbers will look like
const size_t sorted[] ={

MIN_1 4,

MIN_2 4,

MIN_3 4,

MIN_4 4,

SIZE_BIG
8

To solve these maintainability problems, we will try to have Unimal generate the code we
want. Using a generic pattern, we’ll seek a solution in a form

#MP Expand BeginData()

#MP Expand DefineEntry(SIZE_A)

#MP Expand DefineEntry(SIZE_B)

#MP Expand DefineEntry(SIZE_C)

#MP Expand EndData()

Here, the macros to be defined, BeginData , DefineEntry and EndData , are independent
of particular symbols supplied and are reusable, and each symbolic number is entered only
once. This code is easily maintainable since the macros themselves don’t need any
maintenance.

(It is important to emphasize that we invented the algorithm without any Unimal; we know
what code we want to obtain, but we are not satisfied with its maintainability. It is the
maintainability that turned us to seek help from an advanced macro language. This is a
typical situation with Unimal, or any macro language for that matter: we must know in
advance how to get what we want in any particular case, and then use Unimal to obtain a
solution in a maintainable and reusable way.)

We will design the three macros in parallel.

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal : Unified Macro Language 5

First, we need Unimal to make as many passes over the sequence of DefineEntry macro
calls as the number of macro calls in the sequence. There are two implications of this:

« All DefineEntry calls must be within a loop. Given the shape of the solution we
seek, the For statement must be wrapped in the BeginData macro, and the
matching Endfor must be in EndData . All DefineEntry macro calls are therefore
located inside the “body” of the loop. Note that it is a unique feature of Unimal to
allow this split of the loop across several macros.

+ In the For statement, we cannot specify how many times to repeat the loop: we will
learn it only when we pass over all DefineEntry calls and reach the EndData
macro for the first time. So, we will have to manipulate the loop counter manually to
achieve the effect of a do/while loop which Unimal doesn’t have.

We will use the following macro parameters as Unimal compile-time variables:

« done - the loop counter kept at zero while we need more passes and switched to a 2
when done

e pass - a l-based counter of passes

« count - a counter of the DefineEntry macros encountered during the pass

« num_entries - the number of the DefineEntry = macros encountered in the end of
the (first) pass

+ some miscellaneous temporary variables

One of the duties of EndData will be to render the actual array in the end; for clarity, let’s

make a separate macro for it:
#MPMacro RenderArray
const int sorted[] ={

#MP For i=1, num_entries
MIN_ #mp[%d}_ #mp%dthum_entries, //(1)
#MP Endfor
SIZE_BIG
3
#MP Endm

Line (1) of the macro requires an explanation. We use the alternative syntax of the target
language interface: #mp{ %d} to renderi as a decimal number. If we omitted the braces,

Unimal would think the name of the parameter to render ends at the word boundary, and
would therefore conclude that itisi _, which would be wrong.

We can see that line (1) is re-scanned num_entries times. Assuming, for instance, that
num_entries is 3, this would produce

MIN_1 3,

MIN_2 3,

MIN_3_3,
as desired.

Now we are in a position to define all macros:

#MP Macro BeginData ()

#MP pass =1 ;Set for the first pass

#MP For done=0,1 ; (Oa) Start loop until done is 2
#MP count=0 ;(1a) Initialize the number of entries
#MP Endm

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal : Unified Macro Language 6

#MP Macro DefineEntry ;(size)

#MP prev_count = count
#MP count =count+ 1 ;(1b) Count the current number of entries
#MP prev = pass - 1

#MP If pass ==
#define MATCHED 1 #mp%dount O
#MP Else
#define MATCHED_ #mp{%d pass } _#mp%daount \
(MATCHED_ #mp{%d prev } _#mp%dount ||\
(#mp%rtl#==MIN_#mp{%d prev } #mp%aum_entries))
#MP Endif
#MP If count ==
#define MIN_ #mp{%dpass } #mp%dcount \
((MATCHED_#mp{%d pass } _#mp%daount)?SIZE_BIG: #mp%ml#)
#MP Else
#define MIN_ #mp{%dpass } _#mp%dount \
((MATCHED_#mp{%d pass } _#mp%daount)?\
MIN_#mp{%dpass } _#mpY%grev_count \
‘MIN(MIN_ #mp{%dpass } _#mp%gbrev_count , #mp%n #1#))
#MP Endif
#MP Endm

#MP Macro EndData ;()
#MP If pass ==

#MP num_entries = count ;(1c) Capture the number of entries
#MP Endif

#MP If pass == num_entries

#MP done =2 ;(0b) Force loop termination at Endfor
#MP Expand RenderArray()

#MP Else

#MP pass = pass + 1 ;Continue with the next pass

#MP done =0 ;(0c) Force loop continuation at Endfor
#MP Endif

#MP Endfor ;(0d) End of loop started in BeginData

#MP Endm

To see how this set of macros works, recall that we are doing bubble sorting, so we re-scan
the all the elements to sort num_entries times, where num_entries is the total number
of elements (SIZE_A, SIZE_B, SIZE_C in our example). At the beginning, we don’t know
num_entries yet, so we need to count them in lines (1a), (1b) (so count is a 1-based
ordinal number of the currently processed element. In line (1c) the number of elements is
captured.

Since we do not know the number of loop repetitions in advance, we have to control loop
continuation or termination manually. Line (0a) begins a loop with the dummy counter
done. Line (0b) forces termination of the loop in line (0d) when we have made all the
passes over the list of elements (and the next line renders the sorted table). If we have not
made enough passes, line (0c) forces continuation of the loop in line (0d), with the
incremented pass number.

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal : Unified Macro Language 7

The #define statements are created by DefineEntry ; this is done by careful coding of the
plan we designed in the previous section.

These macros are found in sortd3.u, along with the self-test code:

e self-test -------------- */
#include <stdio.h>

#define MIN(a, b) (((a)<(b))?(a):(b))
#define SIZE_BIG 999999

#define SIZE_A sizeof(long)
#define SIZE_B sizeof(short)
#define SIZE_C sizeof(char[3])

#MP Expand BeginData()

#MP Expand DefineEntry(SIZE_A)
#MP Expand DefineEntry(SIZE_B)
#MP Expand DefineEntry(SIZE_C)
#MP Expand EndData()

int main()
t
inti;
for(i=0; i<sizeof(sorted)/sizeof(sorted[0]); i+ +){
printf("[%d]=%d\n", i+1, sorted][i]);

return O;

}

Let’s run it through Unimal,
Unimal sortd3.u >sortd.c

The result is as designed (with the gobbledygook shown in a smaller font):

#include <stdio.h>

#define MIN(a, b) ((()<(b))?(a):(b))
#define SIZE_BIG 999999

#define SIZE_A sizeof(long)
#define SIZE_B sizeof(short)
#define SIZE_C sizeof(char[3])

#define MATCHED_1_10
#define MIN_1_1\
((MATCHED_1_1)?SIZE_BIG:SIZE_A)
#define MATCHED_1_20
#define MIN_1_2\
((MATCHED_1_2)A
MIN_1 1\
:MIN(MIN_1_1, SIZE_B))
#define MATCHED_1_30
#define MIN_1_3\

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal : Unified Macro Language 8

(MATCHED_1_3)?\
MIN_1_2\
‘MIN(MIN_1_2, SIZE_C))

#define MATCHED_2_1\
(MATCHED_1_1 ||\
(SIZE_A==MIN_1_3))

#define MIN_2_1\
((MATCHED_2_1)?SIZE_BIG:SIZE_A)

#define MATCHED_2_2\
(MATCHED_1_2 ||\
(SIZE_B==MIN_1_3))

#define MIN_2_2\
((MATCHED_2_2)A
MIN_2_1\
:MIN(MIN_2_1, SIZE_B))

#define MATCHED_2_3\
(MATCHED_1_3 ||\
(SIZE_C==MIN_1_3))

#define MIN_2_3\
((MATCHED_2_3)A\
MIN_2_2\
:MIN(MIN_2_2, SIZE_C))

#define MATCHED 3 1\
(MATCHED_2 1|\
(SIZE_A==MIN_2_3))

#define MIN_3_1\
((MATCHED_3_1)?SIZE_BIG:SIZE_A)

#define MATCHED_3 2\
(MATCHED_2 2|\
(SIZE_B==MIN_2_3))

#define MIN_3_2\
((MATCHED_3 2)?\
MIN_3_1\
‘MIN(MIN_3_1, SIZE_B))

#define MATCHED_3 3\
(MATCHED_2 3|\
(SIZE_C==MIN_2_3))

#define MIN_3_3\
((MATCHED_3 3)?\
MIN_3_2\
:MIN(MIN_3_2, SIZE_C))

const int sorted[] ={
MIN_1 3, //(1)
MIN_2 3, //(1)
MIN_3 3, //(1)
SIZE_BIG

J§

int main()

t
inti;
for(i=0; i<sizeof(sorted)/sizeof(sorted[0]); i+ +){
printf("[%d]=%d\n", i+1, sorted][i]);

return O;

}

We can actually compile and run this file; here is an output for a typical 32-bit machine:

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal : Unified Macro Language 9

[1]=2
[2]=3
[3]=4
[4]=999999

It is satisfying to notice that if we change the definition of, say, SIZE_A, to, for instance,
#define SIZE_A sizeof(char[3])

so that it becomes the same as SIZE_C, the Unimal source file will expand the same (with
Eh]e 2exception of the new SIZE_C definition), but executing the resulting C file will yield
1]=

[2]=3

[3]=999999

[4]=999999

That is, we indeed sort unique numbers and do it symbolically.

But it doesn’t work! Why?

The first troubling sign comes if we experiment further and use the following definition of

SIZE_A:
#define SIZE_A sizeof(unsigned char[3])

If we use a Microsoft compiler, cl.exe, which comes with Visual Studio (all versions tried),
the Unimal output doesn’t compile, reporting an error where there is none.

The problem gets more exposed if we add another size definition (as in sortd4.u):
#define SIZE_D sizeof(char[3])

and, accordingly, add the line

#MP Expand DefineEntry(SIZE_D)

to our list of elements.

The Microsoft compiler goes belly up with INTERNAL COMPILER ERROR and an invitation to
contact technical support. A less casually written compiler compiles the file correctly, but
takes more than twelve minutes to do so. If we add yet another symbolic element to sort,
the same compiler spends hours compiling. Finally, it fails with “out of memory” error.

This is an indication that the C file we've learned to generate is for some reason extremely
hard to compile. It is our intention now to find the reason and to repair our solution.

If we carefully inspect our design in the section titled A target C solution, we can observe
that our clever C macros are defined recursively, via previous similarly-indexed macros.
This, of course, had been our intention in response to the challenge of symbolic sorting. But
a closer look reveals that the depth of recursion is quadratic on the number of elements to
sort. That is, a fully unfolded (expanded) C macro definition would be a terrible monstrosity.

Our trouble is, as it turns out, mandated by the C standard (actually by any of ‘em
ISO/ANSI C standards). The standard requires (roughly speaking) that a macro be
expanded at a point of reference textually, and the expanded text be searched for any
macros which in turn expand textually, and so on - recursively. So our quadratic depth of
recursion in the C macro definitions puts a compiler to a stress indeed. We simply cannot
abuse the C macro recursion so badly. We need a different mechanism.

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal : Unified Macro Language 10

Such a different mechanism does exist in C; it is to use the typedef statement which
defines a new type. The trick is to define types with appropriate sizes; the sizes of the types
would hold the numbers we want, instead of C macros. The difference is that typedef s
not a part of C preprocessor; it is a part of C proper. That is, at the time a typedef (of a
complete type, for you pedants) is encountered, all terms in the statement must be defined,
and any recursion (one type defined through another) is not unfolded. The number of types
we'll have to define is still quadratic (as is the number of C macros in the present design),
but there is no recursion in processing the typedef statements.

A better C solution, using typedef

In our original design, we defined C macros MIN_<x> <y> , x-th least element among the y
elements scanned so far (in pass x).

In the new design, we will define types, typemin_<x> <y> , whose size serves the same
purpose, i.e. is the x-th least element among the y elements scanned so far (in pass x).

Since for any N sizeof(char| N]) is N, it is handy to define any type we need as an array
of type char.

We will need a helper type, contrib_<x> <y> , whose size is the contribution of the y-th
element to the size of typemin_<x>_<y> . This is similar to the macros MATCHED_<x> <y>
of the original design: the size of is the lesser of typemin_<x>_<y-1> and the contribution
of the y-th element; this contribution is the (symbolic) value of the element provided that it
is greater than the size of typemin_<x-1>_ <num_entries> , the (x-1)-th least unique

element. For uniformity, we’ll say that the contribution of a previously matched element is
SIZE_BIG.

Our template of recursive definitions might therefore look like this:
typedef char contrib_<x>_<y>

[(sizeof(typemin_<x-1> <num_entries>)>=<Value o f x-th element>)?
SIZE_BIG : <Value of x-th element>];

typedef char typemin_<x>_<y>
[MIN(sizeof(typemin_<x>_<y-1>),
sizeof(contrib_<x>_<y>))];

The initial definitions to prime the recursion can be as follows:

typedef char contrib_1 <y>[<Value of x-th element>] ;

typedef contrib_<x> 1
typemin_<x> 1;

Indeed, the first least (that is, minimum) value has every element contributing to its
calculation.

Now, let’s translate these templates to Unimal

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal : Unified Macro Language 11

Implementation of the new design in Unimal

The new implementation is based on the previous one; the framework remains the same
and we basically drop our type definitions in place of C macro definitions (see the file
sort.u).

The macros BeginData and EndData remain unchanged.

RenderArray needs a repair in line (1): the x-th least element is now the size of the type
typemin_<x>_<num_entries>

#MPMacro RenderArray
const int sorted[] ={

#MP For i=1, num_entries
sizeof(typemin_ #mp{ %d}_ #mp%adum_entries), //(1)
#MP Endfor
SIZE_BIG
3
#MP Endm

DefineEntry changes by dropping in our type templates instead of C macros:

#MP Macro DefineEntry ;(size)
#MP prev_count = count

#MP count=count+1

#MP prev=pass-1

#MP, The contribution of 'size' minimum calc is the 's ize'ifitis

#MP, greater than the previous min or SIZE_BIG otherwi se

#MP

#MP If pass==1

typedef char contrib_1_ #mp%daount [#mpY%rl#];

#MP Else

typedef char contrib_ #mp{%dpass } _#mp%dount
[(sizeof(typemin_ #mp{%dprev }_ #mp%dum_entries)>= #mpY%ml#i)?
SIZE_BIG: #mpY%##1#];

#MP Endif

#MP

#MP, size of typemin is the running min
#MP If count==1

typedef contrib_ #mp{%dpass } 1 typemin_ #mp{%dpass} 1;

#MP Else

typedef char typemin_ #mp{%dpass } _#mpY%dount
[MIN(sizeof(typemin_ #mp[%dpass} _#mp%grev_count),
sizeof(contrib_ #mp{%dpass } _#mp%dount))];

#MP Endif

#MP Endm

Let’s now run the following self-test (sort.u):

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal : Unified Macro Language

12

e self-test -------------- */
#include <stdio.h>

#define MIN(a, b) ((()<(b))?(a):(b))
#define SIZE_BIG 999999

#define SIZE_A sizeof(long)
#define SIZE_B sizeof(short)
#define SIZE_C sizeof(char[12])
#define SIZE_D sizeof(char[3])
#define SIZE_E sizeof(char[6])
#define SIZE_X 27

#define SIZE_Y 27

#MP Expand BeginData()

#MP Expand DefineEntry(SIZE_Y)
#MP Expand DefineEntry(SIZE_A)
#MP Expand DefineEntry(SIZE_B)
#MP Expand DefineEntry(SIZE_C)
#MP Expand DefineEntry(SIZE_D)
#MP Expand DefineEntry(SIZE_E)
#MP Expand DefineEntry(SIZE_X)
#MP Expand EndData()

int main()
t
inti;
for(i=0; i<sizeof(sorted)/sizeof(sorted[0]); i+
printf("[%d]=%d\n", i+1, sorted][i]);

return O;

}

+){

The Unimal output is quite lengthy for seven elements in this example. It is no surprise

since the new design still calls for quadratic quantity of gobbledygook:

e self-test -------------- */
#include <stdio.h>

#define MIN(a, b) ((()<(b))?(a):(b))
#define SIZE_BIG 999999

#define SIZE_A sizeof(long)
#define SIZE_B sizeof(short)
#define SIZE_C sizeof(char[12])
#define SIZE_D sizeof(char[3])
#define SIZE_E sizeof(char[6])
#define SIZE_X 27

#define SIZE_Y 27

typedef char contrib_1_1[SIZE_Y];
typedef contrib_1_1 typemin_1 1;

typedef char contrib_1_2[SIZE_A];

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal : Unified Macro Language

13

typedef char typemin_1_2
[MIN(sizeof(typemin_1_1),
sizeof(contrib_1_2))];

typedef char contrib_1_3[SIZE_B];

typedef char typemin_1_3
[MIN(sizeof(typemin_1_2),
sizeof(contrib_1_3))];

typedef char contrib_1_4[SIZE_C];

typedef char typemin_1_4
[MIN(sizeof(typemin_1_3),
sizeof(contrib_1_4))];

typedef char contrib_1_5[SIZE_D];

typedef char typemin_1 5
[MIN(sizeof(typemin_1_4),
sizeof(contrib_1_5))];

typedef char contrib_1_6[SIZE_E];

typedef char typemin_1_6
[MIN(sizeof(typemin_1_5),
sizeof(contrib_1_6))];

typedef char contrib_1_7[SIZE_X];

typedef char typemin_1_7
[MIN(sizeof(typemin_1_6),
sizeof(contrib_1_7))];

typedef char contrib_2 1
[(sizeof(typemin_1_7)>=SIZE_Y)?
SIZE_BIG:SIZE_Y];

typedef contrib_2_1 typemin_2_1;

typedef char contrib_2_2
[(sizeof(typemin_1_7)>=SIZE_A)?
SIZE_BIG:SIZE_A];

typedef char typemin_2_2
[MIN(sizeof(typemin_2_1),
sizeof(contrib_2_2))];

<Let’s omit a few pages>

typedef char contrib_7 5
[(sizeof(typemin_6_7)>=SIZE_D)?
SIZE_BIG:SIZE_D];

typedef char typemin_7_5
[MIN(sizeof(typemin_7_4),
sizeof(contrib_7_5))];

typedef char contrib_7_6
[(sizeof(typemin_6_7)>=SIZE_E)?
SIZE_BIG:SIZE_E];

typedef char typemin_7_6
[MIN(sizeof(typemin_7_5),
sizeof(contrib_7_6))];

typedef char contrib_7_7
[(sizeof(typemin_6_7)>=SIZE_X)?
SIZE_BIG:SIZE_X];

typedef char typemin_7_7
[MIN(sizeof(typemin_7_6),
sizeof(contrib_7_7))];

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal : Unified Macro Language 14

const int sorted[] ={
sizeof(typemin_1_7), //(1)
sizeof(typemin_2_7), //(1)
sizeof(typemin_3_7), //(1)
sizeof(typemin_4_7), //(1)
sizeof(typemin_5_7), //(1)
sizeof(typemin_6_7), //(1)
sizeof(typemin_7_7), //(1)

SIZE_BIG
3
int main()
t
int i;
for(i=0; i<sizeof(sorted)/sizeof(sorted[0]); i+ +){
printf("[%d]=%d\n", i+1, sorted][i]);
return O;
}

This compiles instantly without any problem; here is the (correct) result of the run on a
typical 32-bit machine:

[1]=2

[2]=3

[3]=4

[4]=6
[5]=12
[6]=27
[7]=999999
[8]=999999

So, eliminating quadratic-depth recursion in a quadratic number of definitions made a real
difference.

© 2000-2006 MacroExpressions http://www.macroexpressions.com

