Solving testability problems of resource-constrained embedded systems with interpreted languages

Solving testability problems of resource-
constrained embedded systems with
interpreted languages

White paper

MacroExpressions
http://www.macroexpressions.com

© 2005 MacroExpressions http://www.macroexpressions.com 1

Solving testability problems of resource-constrained embedded systems with interpreted languages

Compiled-in test
code

drives up the
hardware
costs or drives
away useful
features

lacks
necessary
flexibility in
updating the
test code
executed on
as-needed
basis

If you experienced that test, self-test and diagnostics
functionality tends to bloat the precious code space and is
never sufficient, implementing such functionality in an
interpreted language may be the solution, especially if this
code can be downloaded to the target only when needed.

Challenges of compiled-in diagnostic code

Code executes only once

A typical case is manufacturing support code. During different
phases of manufacturing (from electronics assembly to end-
of-line testing of the fully integrated device) different tests
have to be run. In a sophisticated device, the tests can be
sophisticated and must be supported by the device’s firmware.

The trouble is, the supporting code occupies code space even
though it is never needed again. It feels like wasted code
space, doesn't it?

Tests may change or are not known in advance

Quality assurance people want to get to the root cause of
failures in field return units. That elusive root cause was
probably not anticipated and there is no readily available test
to diagnose the problem. Thus, the tests have to be invented
on the fly and tried on the device, but the device’s firmware
cannot support new tests.

Once the root cause is found and happens to be not just a
plain software bug, it is often a good idea to upgrade
manufacturing tests to cover a potential failure mode. Yet you
do not want to release a new firmware for that purpose alone:
It would be much more practical to contain manufacturing
tests in the manufacturing equipment.

In a less gloomy scenario, the device is not released yet, and
the testers are set out to break it by exposing to unusual
conditions of events timing and coincidence, processor load,
network load and anything else they can come up with. The
testers would be grateful if the firmware readily supported
their efforts by enabling simulation of various conditions. But
the conditions to be simulated may not be known during
development.

Some tests execute only on demand from an external tool

It is common to have a set of tests that normally do not run;
their execution is stimulated by an external test tool
connected to the device. A typical case may be in automotive
electronics where a device may detect a failure of certain
functionality, and a test tool is employed to identify the failed

© 2005 MacroExpressions http://www.macroexpressions.com 2

Solving testability problems of resource-constrained embedded systems with interpreted languages

Downloadable or
built-in modulesin
an interpreted
language area
very attractive
proposition for
implementing
diagnostic/test
code.

component with greater precision.

Again, keeping the failure identification code in the device
“just in case” appears a waste of code space. And again,
update of the test code requires another release of the
firmware.

Built-in self-tests can take up a lot of code space

Some tests can be rather sophisticated, especially in regulated
industries. They may involve statistical trend analysis and
interdependencies of different inputs. For instance, measured
wheel speeds of a car could be required to be compatible with
the idea that the four wheels are in the vertices of a rectangle.

Complex tests occupy significant code space and drive up the
cost of the hardware or drive away useful features.

Summary
Test code which is built into the device firmware

» occupies code space and thus drives up the cost of the
hardware or drives away useful features

+ does not provide the necessary flexibility in updating the
test code executed on as-needed basis

Possible improvements

Downloadable test code
The idea is to have

(a) One or more hooks in the firmware to execute any
machine code when properly signaled and

(b) A method to download the test code to the device (usually,
in RAM)

If the test code is recognized by the firmware, it signals the
execution hook to execute the code. The execution
mechanism must provide for resource conflicts resolution (for
an extreme example, by disabling the resident code
completely).

Of course, there are endless variations on this theme (e.g.,
secure download), but the underlying idea remains the same.

This is a neat solution but not without its own problems, some
of which are mentioned below. Not that the problems cannot
be solved (they can) but the solution is by no means in casual
programming: It requires a very crafty programmer, probably
working in Assembler language.

First, downloadable code is very difficult to write and
maintain. For instance, it should be position-independent (to
let the firmware place it where it feels like) or it has to know

© 2005 MacroExpressions http://www.macroexpressions.com 3

Solving testability problems of resource-constrained embedded systems with interpreted languages

the execution address in advance (which requires a good deal
of anticipative planning). If it intends to use any services
provided by the standard firmware, it somehow has to know
where to find them.

Second, the downloadable code is not portable. The end
result is machine code, so if you change the CPU in the next
generation of the product, you’'ll need to change all
downloadable modules. What's worse, if the agreement on
where to find firmware resources changes in the next build
(on the same CPU), all related downloadable modules must be
changed. Sounds like a maintenance nightmare.

Third, the downloadable machine code may have poor
code density. This simply means that the code implementing
a sensible functionality tends to be large, especially for RISC
machines. This affects the download time and the size of RAM
the firmware has to set aside for the downloadable code.

Fourth, there may not be enough RAM to hold
downloaded code. Well, tight RAM resources are one thing.
Quite a different thing is that on some critters in the CPUs
realm, you cannot execute code from RAM (or certain part of
it). This may be a show-stopper for this method.

Interpreted test code

It is sometimes known under different names, e.g., p-code.
The firmware has a built-in interpreter (a.k.a. virtual machine)
of some interpreted language. Pieces of code where the
execution speed is not critical are written in the interpreted
language and the interpreter knows how to deal with the
interfaces to the rest of the firmware.

The hope is that the interpreted code has much higher code
density, so the total amount of code space needed for the
interpreter and all p-code is much smaller than the code space
needed for the same functionality implemented in machine
code.

An important special case is when the interpreted language is
itself a machine language, as strictly speaking p-code is, of
some virtual machine. (In this case the interpreter is sort of
an instruction set simulator.) This intermediate interpreted
language (a.k.a. bytecode) is compiled from a human-made
text source. In such a case, code density is the highest
because source text strings are compacted to small humbers.
For brevity, we do not make a terminological distinction
between the two variants.

Downloadable interpreted test code

This idea naturally combines the two above. A test module
written in an interpreted language is downloaded to the device

© 2005 MacroExpressions http://www.macroexpressions.com 4

Solving testability problems of resource-constrained embedded systems with interpreted languages

When sdlecting the

interpreted
language,
consider, in
addition to code
SizZes,
e Input/output
virtualization
+ Execution
mode! of the
virtual
machine
e Debugging
support

and executed (interpreted) by the built-in interpreter. This
plan promises the following benefits:

High code density of the interpreted code requires less RAM to
be set aside for the downloadable code. Moreover, from the
CPU architecture perspective, the interpreted code is actually
data, so it can be executed from any addressable area.
Additionally, high code density provides for smaller download
times.

Code in interpreted language is much better portable
(provided that you can port the interpreter). Besides, rigid
requirements on the format of the code disappear: the
interpreter takes care of locating the device resources. So,
maintenance problems are greatly reduced.

And of course any built-in interpreted code can be executed
by the same virtual machine.

This approach, therefore, is very attractive for implementing
diagnostic/test code.

What to look for in an interpreted language

Interpreted languages and their virtual machines are created
with different philosophies in mind and target different
application areas. So when choosing a language to implement
test modules, whether downloadable or built-in, certain
properties must be understood and weighed.

Hardware interfaces (I/O) and portability

This is a crucial issue for any test module. How does a virtual
machine know how to set or read a status of an I/O pin high
or low or how to send a byte over a UART or SPI interface of
your microcontroller?

There are two basic approaches.

First: I/0 interfaces are part of the virtual machine which
must be ported to your microcontroller.

Second: I/0 interfaces are virtualized outside the virtual
machine. Roughly speaking, the virtual machine sees inputs
and outputs as port humbers to read from or to write to. This
approach requires a very small set of native (machine code)
functions mapping virtual port numbers to physical inputs and
outputs.

The second approach is preferred for the following reasons:

+ porting a virtual machine becomes a matter of recompiling
it

» your test module is portable verbatim provided you made
virtualization of I/Os compatible with the previous platform

© 2005 MacroExpressions http://www.macroexpressions.com 5

Solving testability problems of resource-constrained embedded systems with interpreted languages

» native implementation of virtual I/O allows you to
encapsulate resource protection

» avirtual I/O may not map to a peripheral at all: it can map
to a memory location, semaphore, mutex etc. for added
flexibility in resource protection

Execution model, memory management and multitasking
considerations

A fundamental question to be answered in selecting the
interpreted language is whether the execution model of the
virtual machine facilitates what you set out to do, or whether
it stands in the way.

For executing testing modules in particular,

+ Where does the VM get its working memory from? Will it
manage the memory buffer supplied in VM initialization call
or will it require you to provide dynamic memory allocation
mechanism? Some embedded coding standards ban
(standard) dynamic memory allocation, and for sound
reasons, too.

» Can you start several instances of the VM and
simultaneously execute different test modules in different
contexts of your choice? Ability to do this is extremely
important. E.g., in studying how robust your task schedule
is, you could simply add test code producing delays in
various contexts and register the results. All this without
modifying the embedded code.

» Can you execute a module piecemeal, with repetitive calls?
This ability is crucial in the absence of preemptive task
scheduling in your system (i.e., if you have simple
executive or cooperative scheduler). Another example -
watchdog-related - is considered below.

Example: the watchdog

Watchdog is a device that resets the system if it is not
“tickled” every so often according to a defined protocol. The
basic idea is that the code checks whether the system state is
OK and tickles the watchdog if it is. The complexity of this is in
the strategies used to determine if the system is OK. These
strategies vary and are application-dependent, and it is best
to keep their innards away from a portable virtual machine.

The problem is, interpreted code is slow and may, in any case,
wait for an event, so the virtual machine will not return
control for a long time. This is likely to trigger the watchdog.

There are two different solutions to this problem.

First, the interpreted code is aware of the watchdog as a
virtual output and outputs to it frequently enough. The

© 2005 MacroExpressions http://www.macroexpressions.com 6

Solving testability problems of resource-constrained embedded systems with interpreted languages

C-Y.angisa
language
optimized for
small procedure-
oriented tasks.

It requires no
additional tools
and meets the
requirements of
embedded
diagnostics.

underlying native function then implements its part of the
watchdog servicing strategy. This method requires, therefore,
I/0 virtualization outside the virtual machine.

Second, the virtual machine allows execution of the
interpreted code in small pieces, i.e., it returns control to the
caller which, in turn, can resume the execution from where
the VM had left off. This method, therefore, requires a virtual
machine capable of piecemeal execution of the code.

Code density and size of the virtual machine
These issues are straightforward yet important:

» the smaller the size of typical test modules, the faster the
downloading and the less RAM is required

» the smaller the size of the virtual machine, the smaller the
total overhead of diagnostic functionality

Support of programming techniques

Buzzwords of the past and the present — scope, visibility,
modularity, structured programming, object orientation - do
not necessarily apply to the development of stand-alone test
modules.

The reason is that individual tests are typically small and have
few interfaces to the outside world. Programs of this size are
comfortably handled in a language of any reasonable style.

Tools for developing and debugging the code

What tools do you need to compile a human-made source
code into bytecode understood by the interpreter?

What debugging support is available? Can the debugging be
done on the target hardware?

C-SLang - a solution from MacroExpressions

If you agree with the analysis above, you might make an
observation that commonly used interpreted languages are
not very well suited for writing embedded diagnostic modules.
However, your solution may be readily available.

C-SLang (http://www.macroexpressions.com/c-slang.html) is
a niche language designed specifically for the purpose of
implementing small downloadable modules, such as
diagnostic/test code.

On the surface, C-SLang is an assembler-like language for a
simple virtual machine.

Under the hood, the language elements are (rather unusual)

© 2005 MacroExpressions http://www.macroexpressions.com 7

Solving testability problems of resource-constrained embedded systems with interpreted languages

constructs in the standard ISO/ANSI C language. If your C
compiler is standard-compliant, you do not need any
additional tools to compile the source to bytecode. (If your
compiler is not compliant, there are a few workarounds.)

The instruction set of the C-SLang virtual machine is
optimized for small procedure-oriented tasks. As an example
of resulting code density, filtering a SAE 1978 diagnostic
message complete with building a negative response takes
well under 150 bytes.

C-SLang virtual machine is written in standard C and is
completely portable. Its size is about 2K for RISC machines
(and smaller for other architectures).

The execution model of C-SLang VM assumes I/0 interfaces
via virtual ports. The VM must be supplied with memory
buffers to operate; it doesn’t have any memory of its own and
is therefore fully reentrant. This automatically allows
executing several C-SLang modules from different contexts.

C-SLang VM provides single-step execution and unlimited
breakpoints. These features can be used both for debugging
C-SLang modules (including inspection and modification of
variables) and for piecemeal execution.

Conclusion

Providing ever-growing diagnostic and testing functionality in
small embedded devices makes using interpreted

downloadable code an attractive proposition. To get the most
benefits from this approach, the interpreted language and the
underlying virtual machine should be selected with great care.

MacroExpressions offers a solution with C-SLang, a simple
language requiring no additional tools. For more on C-SLang,
visit http://www.macroexpressions.com/c-slang.html.

© 2005 MacroExpressions http://www.macroexpressions.com 8

