
Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

Unimal
Unified macro language

Language-independent macro processor
for programmers

Version 2.1

Documentation revision 2.1a

MacroExpressions
http://www.macroexpressions.com



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

2

Table of contents
0. PRELIMINARY NOTES .................................................................................... 5

0.1. WHAT’S NEW IN UNIMAL 2.1...............................................................................5
0.1.1. Motivation..............................................................................................5
0.1.2. Macro definitions ....................................................................................5
0.1.3. Macro expansions ...................................................................................5
0.1.4. Repeat/While loop construct.....................................................................5
0.1.5. Save and Restore operators .....................................................................5
0.1.6. String expressions ..................................................................................6
0.1.7. Syntactic sugar.......................................................................................6
0.1.8. Command line switches ...........................................................................6
0.1.9. Error reporting .......................................................................................6
0.1.10. Bug Fixed in release 2.1 build 231 ............................................................6

0.2. DOCUMENT CONVENTIONS...................................................................................7
0.3. ADDITIONAL RESOURCES....................................................................................7

1. FOREWORD: WHAT IS UNIMAL?..................................................................... 8

2. QUICK START WITH UNIMAL ......................................................................... 9

2.1. TABULATING A FUNCTION: UNIMAL LOOPS AND BUILT-IN MATH ........................................9
2.2. PARAMETERS SHARING AMONG LANGUAGES: EXPORT STATEMENT ...................................10
2.3. SOFTWARE DISTRIBUTION: IF STATEMENT ..............................................................11
2.4. FURTHER APPLICATIONS ...................................................................................12
2.5. HIGHLIGHTS OF OTHER UNIMAL LANGUAGE FEATURES.................................................12

2.5.1. Composite names .................................................................................12
2.5.2. Macros ................................................................................................13

2.6. PUBLISHING THE INDICES OF ARRAY ENTRIES TO A HEADER FILE.....................................14
2.6.1. A useful design pattern..........................................................................14
2.6.2. Export Push/Pop and string expressions...................................................15
2.6.3. Include statement.................................................................................17

2.7. TOWARD TRULY REUSABLE MACROS: INSPECTING PROPERTIES OF THE ARGUMENTS ...............17

3. INVOKING UNIMAL ...................................................................................... 20

3.1. –I AND –I OPTIONS ........................................................................................20
3.2. –O AND –O OPTIONS.......................................................................................21
3.3. –D, –D OPTIONS ...........................................................................................21
3.4. –P OPTION...................................................................................................22
3.5. -N OPTION...................................................................................................22
3.6. -S OPTION...................................................................................................22
3.7. -F OPTION ...................................................................................................22
3.8. DEFAULT OUTPUT ...........................................................................................23
3.9. ERROR REPORTING: UNIMAL.ERR.........................................................................23

4. UNIMAL LANGUAGE REFERENCE GUIDE ....................................................... 24

4.1. GENERAL.....................................................................................................24
4.2. LITERALS.....................................................................................................24

4.2.1. Numbers..............................................................................................24
4.2.2. Strings ................................................................................................25

4.3. MACRO PARAMETERS (COMPILE-TIME VARIABLES) .....................................................25
4.4. SIMPLE NAMES..............................................................................................25



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

3

4.5. FORMATS ....................................................................................................26
4.5.1. %s......................................................................................................26
4.5.2. %d, %u, %x, %X .................................................................................26
4.5.3. %n .....................................................................................................26

4.6. COMPOSITE NAMES .........................................................................................27
4.7. TARGET LANGUAGE INTERFACE............................................................................28
4.8. NUMERIC EXPRESSIONS ...................................................................................29

4.8.1. Terms and operations............................................................................29
4.8.2. Arithmetic expressions ..........................................................................29
4.8.3. Shift expressions ..................................................................................30
4.8.4. Bitwise logic expressions .......................................................................30
4.8.5. Logical expressions ...............................................................................30

4.8.5.1. Comparisons................................................................................................. 31
4.8.5.2. Negation ‘!’................................................................................................... 31
4.8.5.3. Logical AND ‘&&’ and OR ‘||’ expressions.......................................................... 31

4.9. STRING EXPRESSIONS .....................................................................................32
4.10. ATTRIBUTES .................................................................................................32
4.11. BUILT-IN EXPRESSIONS ...................................................................................32

4.11.1. Logical built-ins ....................................................................................32
4.11.1.1. Defined....................................................................................................... 32
4.11.1.2. Isconst ....................................................................................................... 32

4.11.2. Numeric functions.................................................................................33
4.11.2.1. Math functions ............................................................................................. 33
4.11.2.2. Misc. functions............................................................................................. 34

4.11.3. String expressions ................................................................................34
4.11.3.1. Name-to-string conversion ............................................................................ 34
4.11.3.2. Substring extraction uSubstr ........................................................................ 34
4.11.3.3. Concatenation uJoin .................................................................................... 35
4.11.3.4. Simplified Concatenation............................................................................... 35
4.11.3.5. Splitting a string uSplit ............................................................................... 36
4.11.3.6. Defined encoding ......................................................................................... 36

4.12. UNIMAL OPERATORS .......................................................................................37
4.12.1. Empty operator ....................................................................................37
4.12.2. For......................................................................................................38
4.12.3. Endfor .................................................................................................38
4.12.4. Repeat ................................................................................................38
4.12.5. While ..................................................................................................39
4.12.6. If ........................................................................................................39
4.12.7. Else ....................................................................................................39
4.12.8. Endif ...................................................................................................39
4.12.9. Ifdef....................................................................................................39
4.12.10. Set...................................................................................................40
4.12.11. Setstr ...............................................................................................40
4.12.12. Macro ...............................................................................................40
4.12.13. Endm ...............................................................................................41
4.12.14. Expand (non-recursive) ......................................................................41
4.12.15. Expand (possibly recursive).................................................................42
4.12.16. Include .............................................................................................42
4.12.17. Export ..............................................................................................43
4.12.18. End ..................................................................................................43
4.12.19. Undef ...............................................................................................44
4.12.20. Save ................................................................................................44
4.12.21. Restore.............................................................................................44

4.13. A USEFUL SHORTHAND FOR A LIST OF ARGUMENTS.....................................................45



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

4

4.14. SPECIAL MACRO PARAMETERS.............................................................................46
4.14.1. uAutoLine ............................................................................................46
4.14.2. uAutoLineOut .......................................................................................47

5. ERROR DETECTION AND RECOVERY............................................................. 48

5.1. ERROR LOGGING MECHANISM IN UNIMAL................................................................48
5.2. UNIMAL ERROR MESSAGES REFERENCE...................................................................48

5.2.1. Default format of an error message.........................................................48
5.2.2. Error message format mimicry ...............................................................49
5.2.3. F type: Fatal file errors ..........................................................................50

5.2.3.1. Error 0102.................................................................................................... 50
5.2.3.2. Error 0103.................................................................................................... 50
5.2.3.3. Errors 0104, 0105 (output file), 0106 (input file) .............................................. 50
5.2.3.4. Error 0111.................................................................................................... 50

5.2.4. Special F type error (Usage syntax) ........................................................50
5.2.5. A type: Out of memory..........................................................................51
5.2.6. S type: Syntax errors............................................................................51

5.2.6.1. Error 2000 (The file has an unbalanced beginning or end of a block).................... 51
5.2.6.2. Error 2001 (General syntax error) ................................................................... 51
5.2.6.3. Error 2002 (Macro redefinition) ....................................................................... 52
5.2.6.4. Error 2004 (Missing actual argument) .............................................................. 53
5.2.6.5. Errors 2005, 2006, 2007 (Unmatched block operators) ...................................... 53
5.2.6.6. Error 2009 (Bad macro reference) ................................................................... 53
5.2.6.7. Error 2010 (Unexpected type)......................................................................... 53
5.2.6.8. Error 2011 (undefined parameter)................................................................... 54
5.2.6.9. Error 2012 (formatting in composite names or target language interface) ............ 54
5.2.6.10. Error 2013 (expected macro parameter) ......................................................... 54
5.2.6.11. Error 2014 (expected a numeric) ................................................................... 54
5.2.6.12. Error 2015 (undefined string expression) ........................................................ 54
5.2.6.13. Error 2016 (invalid string expression) ............................................................. 54
5.2.6.14. Error 2017 (wrong number of arguments to a function) .................................... 55
5.2.6.15. Error 2018 (literal number too large).............................................................. 55
5.2.6.16. Error 2019 (string not terminated) ................................................................. 55
5.2.6.17. Error 2020 (Nested macro definition).............................................................. 55
5.2.6.18. Error 2021 (Unmatched While) ...................................................................... 55
5.2.6.19. Error 2022 (Recursive macro expansion)......................................................... 55

5.2.7. L type: Lexical errors ............................................................................56
5.2.8. M type: Math errors ..............................................................................56

5.2.8.1. Errors 3500, 3501, 3502 (Arithmetic overflows)................................................ 56
5.2.8.2. Error 3503 (Divide by zero) ............................................................................ 56
5.2.8.3. Error 3504 (Non-positive divisor in remainder operation..................................... 56
5.2.8.4. Errors 3510, 3511, 3512, 3513 (math functions errors) ..................................... 56

5.2.9. Internal errors......................................................................................57

6. ADDITIONAL FACTS ..................................................................................... 58

6.1. (NO) IMPLEMENTATION LIMITS ...........................................................................58
6.2. TOKENIZATION..............................................................................................58
6.3. INCLUDING AN OUTPUT FILE...............................................................................58



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

5

0. Preliminary Notes

0.1. What’s New in Unimal 2.1
(You can skip this change log if you are new to Unimal.)

0.1.1. Motivation
Generally, Unimal is reluctant to add new features because it wants to be very easy to 
learn. However, there is a balance to be found between being easy to learn and being easy 
to apply.

The features added to 2.1 come from the real-world experience and improve Unimal’s ease 
of use.

0.1.2. Macro definitions
Beginning with version 2.0b, Unimal addresses two usability issues related to the placement 
of macro definitions:

 If the same macro definition is encountered more than once (as is the case with 
including the same file more than once), it is not an error.

 A macro definition can be placed within a block (i.e., between If/Endif, or 
Else/Endif, or For/Endfor); blocks are counted as if any macro expansions 
were completed. The primary motivation for this feature is simply to enable guarded 
include files (which technique is common practice in C and C++), but there are other 
uses of it, too.

Correspondingly, the error message S2008 is removed and a new error, S2020 "Nested 
macro definition" is added.

0.1.3. Macro expansions
In version 2.1, a traditional macro invocation generates an error if it would cause a 
recursion. (Prior to 2.1, any such recursion would implicitly be infinite because Unimal must 
expand false blocks e.g. in a search for unbalanced Endfor.)
To allow recursive macro expansion, the user must indicate that the macro (including 
macros contained in it) is balanced; the syntax to do so is to pass the argument list in 
square brackets.

0.1.4. Repeat/While loop construct
Beginning with Unimal 2.0b, a Repeat/While loop construct analogous to C do/while
construct is available. It doesn’t add any new functionality because it can be emulated with 
a For/Endfor loop and manual manipulation of the loop counter. However, Unimal code 
in many cases becomes so much cleaner with the Repeat/While loop that its addition felt 
justified.

0.1.5. Save and Restore operators
Beginning with version 2.1:
Unimal now allows to stash a macro parameter away and to restore it, selectively, if so 
desired. E.g.
#MP Save myparam



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

6

The Restore operator restores the value(s) saved.

0.1.6. String expressions
Beginning with version 2.1:

 For a numeric expression n, [n] is a single-character string with its character 
encoded with the value of the least significant byte of n. E.g. if n=65 and ASCII 
encoding is in effect, [n] is “A”. 

0.1.7. Syntactic sugar
Beginning with version 2.1:

 In Set, Compute and Setstr operators, the equal sign may be omitted
 In Setstr operators, string concatenation can take a form of a sequence of string 

expressions, optionally separated by the + sign.

Beginning with version 2.0b:
 In a macro invocation, the keyword Expand may be omitted, and if the argument 

list is empty, the (empty) parentheses may be omitted, too.

0.1.8. Command line switches
Beginning with Unimal 2.1:
-f<file> reads the command line arguments from <file>; this serves as a command line 
extension
-N<name>=<number> added in version 2.0c is now checked for correctness
A new error message, F0111, is added to indicate an incorrect command line option

Beginning with Unimal 2.0c:
-S<name>=<string> defines macro parameter <name> with the string value <string>
-N<name>=<number> defines macro parameter <name> with the numeric value 
<number>
-v Displays version information

0.1.9. Error reporting
Prior to release 2.1 (build 231), Unimal did not log more than one error per line of input. 
That’s because a second error is likely to be induced by the first one. 
Beginning with release 2.1 (build 231), Unimal outputs all errors. Even though some errors 
are induced by a previous error, the error output allows better understanding of the root 
cause of the failed execution.

0.1.10. Bug Fixed in release 2.1 build 231
 This bug is unique to Unimal 2.1 build 227.

–v and –p command-line options are occasionally not recognized
 A dangling end-of block by the end of a file may cause Unimal to crash. Now it aborts 

processing cleanly, with a sensible error message
 Errors were suppressed if they were found in a false block. That was wrong e.g. for 

file access errors. Now applicable errors are reported always.



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

7

0.2. Document conventions
Code snippets, names of variables and such are in courier new font.
Of them, keywords are blue.
Formal arguments of Unimal macros are shown #red#.
Unimal comments are shown in green. 
Literal strings are shown in brown.
When line numbers in a code snippet are referenced, the line numbers in parentheses are 
shown to the left of the code lines.

0.3. Additional Resources
There is a QuickStart subdirectory of the Samples directory in the distribution; it 
contains the files referenced in the Quick Start section. If you prefer to work along, do use 
those files for reference.

Also, don’t miss the Application Notes; some are included in the distribution; more are 
available on the Web site.



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

8

1. Foreword: What is Unimal?
In short, Unimal is an advanced language-independent macro preprocessor. That is, it is a 
utility that processes a source file into one (or more!) output file(s) which are, in their turn, 
source file(s) in one (or more!) programming languages.

The name stands for UNIfied MAcro Language. ‘Unified’ here means that the same macro 
processor applies to various (programming) languages, like C, Assembler, Linker command 
language, make files, or almost any language whatsoever.

Unimal is not made to replace any software development tools; it is to supplement them 
with better software management capabilities. 

A software developer would use Unimal in a situation where there is a need in a powerful 
macro processor. The powerful features of Unimal, some unique, make it a macro processor 
of choice.

Unimal is not (maybe, unfortunately) designed with utmost elegance in mind. Instead, it is 
designed to be simple in accomplishing simple tasks and powerful enough to make complex 
solutions possible.

The next section introduces several practical problems and illustrates Unimal features 
facilitating the solutions.



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

9

2. Quick Start with Unimal

Conceptually, Unimal macro language is very simple: it is line-based, and each line in a 
source file is either a line in a target programming language or a Unimal statement. The 
former can have a special markup, which instructs Unimal to replace the markup with 
corresponding text.

2.1. Tabulating a function: Unimal loops and built-in math
As an illustration, consider the problem of tabulating a hard-to-compute function in a 
constant integer array – a problem often encountered in embedded programming. In our 
first example, we want to tabulate, in C, a scaled sine wave, 10000*sin(x) at seven 
equidistant points in the segment [0, π/2]. Here is a solution:

(1) const int sinewave[] = {
(2) #MP For n=0, 6
(3) #MP     val = Usin(10000, 1, n, 2*6)
(4) #mp%dval,
(5) #MP Endfor
(6) };

The Unimal output is
const int sinewave[] = {
    0,
    2588,
    5000,
    7071,
    8660,
    9659,
    10000,
};

(If you prefer to work along, run 
Unimal sine6.u

from the command line in the QuickStart folder; the result will be sent to the standard 
output.)

Here’s what is happening here:
Line 1 is normal C code; since it doesn’t have any Unimal markup, it is copied from input to 
output verbatim.
Line 2 starts with the marker #MP; this indicates a Unimal statement. As with all Unimal 
statements, nothing from this line is sent to output. The statement itself is a loop 
statement; it instructs Unimal to re-scan the source file until the matching end of loop for 
n=0,1, …, 6. Matching end of loop is found in line 5, so lines 3 and 4 will be scanned for 
all values of n.
Line 3 (again, because of the #MP marker) is a Unimal statement. It is a Set statement, 
assigning the value of a numeric expression to the macro parameter val. In our case, the 
numeric expression is a built-in function, Usin, which computes a scaled integer sine:



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

10

Usin(a, b, c, d) = 







d

c

b

a sin

Line 4 does not start with the #MP marker, so it is considered a line in the target language 
and is to be sent to the output. However, it contains a Unimal markup, #mp%d, which 
instructs Unimal to render the macro parameter that follows (val) as a decimal number. 
What’s outside the markup (in this case, just a comma) is copied to the output unchanged. 
As n changes with each rescan of the source, so does val. This is how the numbers in the 
output are produced.
Line 5 is a Unimal statement (it starts with #MP); this is the end-of-loop statement which 
indicates the boundary for repeated source rescan.
Finally, line 6 is a target language statement without markup; it is copied to the output.

This simple example hints at Unimal’s powers in automating static (compile-time) 
initialization. While this is most important in resource-constrained embedded applications, 
“normal” computer applications can benefit from Unimal in implementing table-driven 
algorithms and/or software designs.

2.2. Parameters sharing among languages: Export statement
As a different example, consider sharing constant parameters across languages. Let’s say 
we need to share a symbolic definition, which, say in an Assembler looks like

MYDATA .equ 17
and in C,

#define MYDATA 17
For the purpose of project maintenance, we want to enter one definition once (or else they 
are going to diverge). How to do this if C doesn’t understand Assembler definitions and vice 
versa?

Let’s have Unimal make an Assembler include file, mydata.inc, and a C header file, 
mydata.h, from a single Unimal definition:
Example: Sharing a definition between C and Assembler
#MP Set MYTHING = 17 ;MYTHING is a Unimal name
#MP Export (0) "mything.h"
#define MYTHING #mp%dMYTHING
#MP Export (0) "mything.inc"
MYTHING .equ #mp%dMYTHING
#MP Export (0) ""
Done exporting MYTHING to mything.inc and mything.h

(If you are working along, c-asm.u is the file.)

The first line, since it doesn’t begin with #MP, is considered in a target language; in this 
case it is English. It is sent to the output which, by default, is standard output stream 
(stdout).

The second line is an already familiar Set operator. Note the keyword Set (which is optional, 
as we have seen). As a result, Unimal macro parameter MYTHING is assigned the numeric 



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

11

value 17. This is a common, language-independent definition which we want to be entered 
only once. Any text from a semicolon to the end of line is a comment and is ignored.

The third line is the Unimal export statement: the argument in parentheses, being a zero, 
instructs Unimal to overwrite the output file if it exists. The name of the output file is 
supplied as the second argument, so from the next line on the output is sent to the file 
mything.h.

Line 4 is a target language interface with a markup telling Unimal to render the macro 
parameter MYTHING as a decimal number. The resulting line, 
#define MYTHING 17
is sent to mything.h

Similarly, line 5 switches output to the file mything.inc, and line 6, transformed to
MYTHING .equ 17
is sent to mything.inc

Line 7 switches the output again, but this time the file name is an empty string. By 
convention, it means the default output (stdout), and line 8 is output there.

A simple yet important application of parameter sharing in the embedded world is sharing 
the microcontroller memory map among the programming language(s), linker command 
file, and other post-link tools, like program image CRC calculations.

2.3. Software distribution: If statement
Unimal can be very useful in configuring and managing multiple projects in a family.
As an almost trivial example, consider a family of projects with customer-specific features 
implemented as fragments of code. Using C/C++ preprocessor, you might write something 
like this:

#define CUSTOMER CUSTOMER_B
...........................
#if CUSTOMER==CUSTOMER_A
<customer A code>
#endif
#if CUSTOMER==CUSTOMER_B
<customer B code>
#endif
#if CUSTOMER==CUSTOMER_C
<customer C code>
#endif

If, however, you deliver your product in source code, you don’t necessarily want a customer 
to see what other customers are getting (or who they are or that they even exist). Unimal 
allows writing a similar thing:

#MP Set CUSTOMER = CUSTOMER_B
...........................
#MP If CUSTOMER==CUSTOMER_A



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

12

<customer A code>
#MP Endif
#MP If CUSTOMER==CUSTOMER_B
<customer B code>
#MP Endif
#MP If CUSTOMER==CUSTOMER_C
<customer C code>
#MP Endif

This snippet illustrates the If statement; it works as intuitively expected. The result of 
Unimal processing of this fragment will contain only the code for the selected customer, in 
this example, 
<customer B code>

2.4. Further applications
Unimal can be extremely useful in numerous situations a programming practitioner faces. A 
few simpler ones are discussed above; others may be mentioned further as we go along.

Cases that are more realistic may be more complex than this introduction is comfortable 
with; they are covered in separate application notes.

One of the more interesting (and algorithmically complex) applications involves automatic 
generation of auxiliary data, such as lookup tables, along with the corresponding accessor 
functions.

However, technically simple applications, like forced loop unrolling, or compacting data 
representation, are no less useful.

And that’s the whole point of Unimal:
You decide what is to be achieved at build time. You, not bound by limits of your 
programming language, come up with a conceptual algorithm of realizing your goal. Unimal 
provides expressive power to implement your algorithm.

2.5. Highlights of other Unimal language features

2.5.1. Composite names
An interesting feature of Unimal is support of composite names. They provide functionality 
of arrays, sparse arrays, and associative arrays (like Perl hashes) in a uniform manner.
As a simple example, consider a disparate set of, say, character strings, which you would 
like to process later in a loop, so you would like to give them “indexed” names.

The following code does just that:
(1) #MP count = 0
(2) #MP Setstr str%dcount = “foo”
(3) #MP count = count+1
(4) #MP Setstr str%dcount = “bar”
(5) #MP count = count+1
(6) #MP Setstr str%dcount = “baz”



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

13

(7) #MP count = count+1

In lines 2, 4 and 6 we see a common construct, str%dcount (and a Setstr operator 
assigning a string value to a macro parameter). It is a base name (in our case, str), 
followed by one or more suffixes. A suffix is a format (such as %d) followed by a simple 
name (count). A base name is a simple name or it can be empty.

When we arrive at line 2, count=0, and the name in Setstr is rendered by “printing” 
the suffix, according to the format, as a decimal number, resulting in str0. When we are at 
line 4, count is a 1, so line 4 is equivalent to
#MP Setstr str1 = “bar”
Similarly, line 6 is equivalent to
#MP Setstr str2 = “baz”

As a useful side effect, after line 7, count is the number of strings we enumerated.

2.5.2. Macros
Unimal allows shaping this in a prettier and better maintainable way by using its macro 
facility.
In general, our definitions will have some initialization (like line 1 above), actual definition 
statements and perhaps some post-processing stuff as well. So, a typical data definition 
would look like
#MP Expand BeginData()
#MP Expand DefineData(“foo”)
#MP Expand DefineData(“bar”)
#MP Expand DefineData(“baz”)
#MP Expand EndData()

The Unimal operator Expand expands a named macro with arguments passed in a comma-
separated list in parentheses, which may be empty. A macro name can be the name of a 
previously defined macro or a string expression which resolves to a name of a previously 
defined macro.

The keyword Expand is optional and may be omitted without restrictions. Empty 
parentheses may be omitted, too. So, the text above may be rewritten as
#MP BeginData
#MP DefineData(“foo”)
#MP DefineData(“bar”)
#MP DefineData(“baz”)
#MP EndData
It is purely the matter of style to choose one look over the other.

Let’s define the macros applicable to this example:
(1) #MP Macro BeginData ;()
(2) #MP count = 0
(3) #MP Endm
(4) #MP Macro DefineData ;(string)
(5) #MP Setstr str%dcount = #1#
(6) #MP count = count+1



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

14

(7) #MP Endm
(8) #MP Macro EndData ;()
(9) #MP NumStrings = count

(10) #MP Undef count {NUM}
(11) #MP Endm

A macro definition begins the keyword Macro, followed by a simple name which is the 
name under which the macro will be known. It ends with the keyword Endm. Any lines in 
between are the macro body which is substituted for the Expand operator. In the Unimal 
text above, lines 1, 4, 8 are beginnings of macro definitions, lines 3, 7, 11 are their 
respective ends, and lines 2, 5-6, 9-10 are the corresponding bodies.

Note that the number and types of arguments are not part of a macro definition; so if you 
write a macro expecting certain parameters, it is a good idea to indicate that in a comment.

In the second macro body, we encounter the expression #1#; it is a way to name the first 
argument passed to the macro.

In the third macro body, just for the sake of illustration, we save the number of strings 
defined and undefine a numeric (NUM) value of count. If count had a string and/or a 
macro value, they would still be defined. That is to say, a Unimal macro parameter can have 
a numeric, a string and a macro values at the same time (one might say they belong to 
different namespaces; which value is used depends on the context).

We can test our macros by printing the enumerated strings (see enums.u):
We enumerated #mp%dNumStrings strings:
#MP For i=0, NumStrings -1
#mp%di. “#mp%sstr%di”
#MP Endfor

Here is the output:

We enumerated 3 strings:
0. "foo"
1. "bar"
2. "baz"

2.6. Publishing the indices of array entries to a header file

2.6.1. A useful design pattern
Typically, a definition sequence Begin/Define/End is meant to process the Define
type statements more than once, i.e. in a loop. This requires wrapping the For statement 
in the Begin macro and the Endfor statement in End. Unimal allows this spanning of a 
loop (as well as of If/Else/Endif compounds) across several macros.

As a simple example, consider defining an initialized array foo of some objects in a C file 
foo.c, and publishing their indices in a header foo.h.



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

15

This is what it might look like:

#MP Expand BeginArray("foo")
#MP Expand ArrayEntry("MYINDEX", "myObject")
#MP Expand ArrayEntry("YOURINDEX", "yourObject")
#MP Expand ArrayEntry("HISINDEX", "hisObject")
#MP Expand ArrayEntry("HERINDEX", "herObject")
#MP Expand EndArray()

BeginArray takes the base name of a file (before extension); it is also the name of the 
array to generate. ArrayEntry takes a symbolic name of the index and an object 
expression.

2.6.2. Export Push/Pop and string expressions
Here are the macro definitions with explanations that follow (see indices.u):

#MP Macro BeginArray ;(basename)
#MP Setstr suffix0 = ".c"
#MP Setstr suffix1 = ".h"
#MP Export Push
#MP For pass = 0,1
#MP     Export (0) {uJoin, #1#, suffix%dpass}
#MP     count = 0
#MP If pass == 0
ob_type #mp%s#1#[] = {
#MP Endif
#MP Endm

#MP Macro ArrayEntry ;(index_name, object_name)
#MP If pass == 0
    #mp%s#2#,
#MP Endif
#MP If pass == 1
#define #mp%s#1# #mp%dcount
#MP Endif
#MP count = count + 1
#MP Endm

#MP Macro EndArray ;()
#MP     If pass == 0
};
#MP     Endif
#MP     Undef suffix%dpass {STR}
#MP Endfor
#MP Undef count {NUM}
#MP Undef pass {NUM}
#MP Export Pop



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

16

#MP Endm

BeginEntry first defines two strings, suffix0 and suffix1, to be the extensions of 
the files we are going to make. Second, the Export Push statement remembers the 
current output file to restore after we are done; it is a clean way to go since we are going to 
change the output file. The next (For) statement starts the loop which will be repeated 
twice, for pass values 0 and 1. The loop will span quite a few statements until Endfor is 
encountered (in EndArray).

The next statement (which is already within the loop body) changes the output. The (0) 
argument means that if the file exists, it will be overwritten. The second argument is the 
filename; it is represented here by a string expression, 
{uJoin, #1#, suffix%dpass}. 
The first in the list here is the name of string operation, in this case, concatenation. The 
second in the list is the first actual argument of the macro (like the “foo” that was passed 
in the example. The third in the list is a macro parameter suffix%dpass with a 
composite name. In it, the rendering format causes pass appear as 0 and 1 respectively in 
the two passes. So, in pass 0, suffix%dpass resolves to suffix0 (which we already 
cleverly set to “.c”, and in pass 1 to suffix1 (“.h”). So, the whole string expression 
evaluates to “foo.c” in pass 0 and to “foo.h” in pass 1.

The next line initializes count to 0; it will be counting the array entries identically in both 
loop passes. Finally, if pass=0 (we are making the .c file), we render the beginning of the 
array definition, like
ob_type foo[] = {

The macro ArrayEntry is designed to be scanned twice (in a loop) but is quite simple:
In pass 0 it renders the object expression taken verbatim from the second macro argument, 
followed by a comma to follow C initialization syntax, like
    myObject,
In pass 1 it generates C symbolic definition of the index of the array entry, taking the 
symbolic name from the first macro argument, and the value, of course, is count, the 
ordinal number of the instance of ArrayEntry being processed, e.g.
#define MYINDEX 0
And, in both passes, count is incremented (to do the counting).

The EndArray, in pass 0, closes the C array according to the language syntax:
};

The next is a cleanup statement: in pass 0 we no longer need suffix0, and in pass 1, suffix1, 
so we undefine them so that the not be used elsewhere inadvertently. Note the attribute 
STR in braces: just in case, we undefine only the string value; if, say, suffix0 had a macro 
or a numeric value, they’d still remain defined.

The next statement (Endfor) ends the loop body that began far away in BeginArray. 

As a final cleanup, EndArray undefines numeric values of count and pass and, in the 
Export Pop statement, restores the output to whatever stream it was before 
BeginArray.



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

17

If we run the test file (Unimal indices.u), the following files will be created:

foo.c

ob_type foo[] = {
    myObject,
    yourObject,
    hisObject,
    herObject,
};

foo.h

#define MYINDEX 0
#define YOURINDEX 1
#define HISINDEX 2
#define HERINDEX 3

2.6.3. Include statement
It is worth noting that the macros we devised are entirely reusable. We can keep them in a 
separate include file, like indexgen.u. Then our toy application would begin with the 
statement
#MP Include “indexgen.u”

The example file is indices1.u (of course, together with indexgen.u). The outputs 
they produce are the same as above.

2.7. Toward truly reusable macros: inspecting properties of the arguments
As a final example, also illustrating some more Unimal built-ins, consider a macro which 
prints information about its arguments:

(1) #MP Macro Args ;(list)
(2) #MP     For i=0, #0#
(3) #MP         If Isconst(#i#)
(4) Argument ##mp%di is constant
(5) #MP             If Isconst(#i#{NUM})
(6) Numeric value: #mp%d#i#
(7) #MP             Endif
(8) #MP             If Isconst(#i#{STR})
(9) String value: #mp%s#i#

(10) #MP             Endif
(11) #MP         Else
(12) Argument ##mp%di is NOT constant; its name is #mp%n#i#
(13) #MP             If Defined ( #i# {NUM} )



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

18

(14) Numeric value: #mp%d#i# (0x#mp%08X#i#)
(15) #MP             Endif
(16) #MP             If Defined(#i#{STR})
(17) String value: #mp%s#i#
(18) #MP             Endif
(19) #MP             If Defined(#i#{MAC})
(20) It is a defined macro
(21) #MP             Endif
(22) #MP         Endif
(23) #MP     Endfor
(24) #MP Endm

The macro is a large loop starting at line 2; the upper limit, #0# is a special (and always 
defined) macro argument whose value is the number of actual arguments in the invocation 
of the macro.

Line 3 tests a built-in expression, Isconst(); its value is 1 if the argument cannot be 
changed within the macro, i.e. it is an expression, or 0 if the argument is a macro 
parameter (a compile-time variable). The argument to Isconst in line 2 is #i#; it is the 
argument number i in the macro invocation.

If the test in line 3 passes, line 4 prints a message to that effect, referencing the ordinal 
number of the argument. 
Then, lines 5 and 8 do more detailed tests: whether the argument is a number or a string; 
lines 6 and 9 print the values. Note how the arguments to Isconst are qualified with 
attributes. (Exactly one of the two tests must pass.)

If the test in line 3 fails, we are into the Else clause in line 11.
Line 12 prints a corresponding message indicating the ordinal number of the argument 
(using the %d format) and the name of the argument (using the %n format).
Then, lines 13, 16, 19 test whether the argument (which is already known to be a 
parameter, or variable) has a numeric, string, and/or macro value. This is done using a 
built-in Defined() expression, which is a 1 if the corresponding qualified name is defined 
(i.e. has a value corresponding to the attribute), and is a 0 otherwise. An unqualified 
Defined, like Defined(x) is shorthand for Defined(x{NUM,STR}).
If a test in line 13, 16, or 19 passes, a corresponding message is printed by lines 14, 17, 
20. Note that since a named parameter can have values with different attributes, more than 
one test can pass.

To test the macro, let’s assign a string and a numeric value to the same name as that of the 
macro:

#MP Setstr Args = "abcd"
#MP Args = 2006

Now, let’s invoke it:
#MP Expand Args(Args, (Args), {Args}, !Defined(foo), {uSubstr, Args, Ustrlen(Args), 0})

The second argument is a numeric expression (same value as the numeric value of Args).
The third argument is a string expression (same value as the string value of Args).



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

19

The fourth argument is a logical negation of an unqualified Defined expression, and it is a 
numeric expression like in C.
The fifth argument is a string expression. uSubstr extracts from its string second 
argument a substring delimited by the indices represented by the numeric third and fourth 
arguments. If start index is greater than the end index, the order of characters is reverted.

Here is the output of the test invocation:
Argument #0 is constant
        Numeric value: 5
Argument #1 is NOT constant; its name is Args
        Numeric value: 2006 (0x000007D6)
        String value: abcd
        It is a defined macro
Argument #2 is constant
        Numeric value: 2006
Argument #3 is constant
        String value: Args
Argument #4 is constant
        Numeric value: 1
Argument #5 is constant
        String value: dcba



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

20

3. Invoking Unimal
Unimal is a command-line utility. Its invocation syntax is

Unimal [<options>] <input_file> [<options>]

(As usual, brackets indicate optional parameters.)

<input_file> is a Unimal source file. 

The following options are supported:
 -i<Path>, -I<Path> specify search directories for include files
 -o<Path>, -O<Path> specify output directories
 -D<Filename>, -d<Filename> specify the file where include files dependencies are 

dumped
 -p changes the format of filenames maintained by Unimal
 -v prints version information and options help to stderr (standard error device, 

typically the console). Additionally, each output file name is printed to stderr when 
that output becomes current.

 -N<name>=<value> defines a named macro parameter with the specified numeric 
value

 -S<name>=<string> defines a named macro parameter with the specified string 
value

 -f<filename> reads the command line options from the named files

Note that no space is allowed between an option and a path- or file- or parameter name.

Unimal invoked incorrectly terminates immediately with a fatal error (F0099 or F0111). 

3.1. –i and –I options
These options apply to Unimal Include statements where the filename to include either has 
no path part or is a relative pathname.

In this case, the directories specified by an –i or –I options are searched in the order of 
their appearance on the command line until the matching include file is found.

The difference between –i and –I is where the specified directory has itself a relative path. 
In this case, -IPath treats Path as relative to the current working directory at the time of 
invoking Unimal. On the contrary, -iPath treats Path as relative to the directory where the 
file currently being processed is located. For instance, consider a command line

Unimal foo.u –ibar –ibaz
Let’s assume that foo.u has a statement
#MP Include “foo.uu”
and foo.uu is found in baz directory. If foo.uu, in turn, includes fuu.uu, the latter is 
searched in directories relative to baz, i.e., in baz/bar and baz/baz.

Typically, you would use only one of the –i and –I options, depending on how your project 
directories are designed. The two options are provided for flexibility and ease of integrating 
Unimal in your build process.



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

21

Any number of –i and/or –I options can be supplied on the command line. As usual, 
pathnames containing spaces must be quoted.

Notes:
1. The directory of the currently processed file is always searched first. It can be said 

that the –i. option (search current file-relative directory) is built in.
2. It matters whether –i or –I option is placed before or after the input file on the 

command line. Directories, which are specified before the input file, are searched for 
the input file itself, provided it is specified with the relative pathname. In that
search, -i option, too, treats relative paths as relative to the current working 
directory. (Those familiar with VPATH functionality of GNU make, will notice 
similarity. For simplicity of integration in the project build process, Unimal has this 
functionality built in.)

3. On Windows platforms, you can specify a path relative to the CWD on a particular 
drive, such as E:\foo. Unimal does not treat these path specifications as relative, 
even if the specified drive is the current drive.

3.2. –o and –O options
These options specify the output directory for the cases where the output file in an Export
statement has a relative pathname.

You can specify more than one –o and/or –O option, but only one (the last one) takes 
effect.

The difference between –o and –O is where the specified directory has itself a relative path. 
In this case, -OPath treats Path as relative to the current working directory at the time of 
invoking Unimal. On the contrary, -oPath treats Path as relative to the directory where the 
file currently being processed is located. If no –o, -O options are specified, then -o. 
assumed, and an output file will be located relative to the currently processed file. This 
might not be the best expected behavior, and the option –O. is often preferred in “descend 
into subdirectories” build processes.

Note:
1. Unimal doesn’t create directories; they must exist or Unimal will fail.

3.3. –d, –D options
For a change, -d and –D options are (almost) equivalent. They specify the dependencies 
file. If the filename is relative, it is considered relative to the current working directory at 
the time of Unimal invocation.

Since Unimal can include files, directly or indirectly, while processing the input file, it is 
subject to the curse of include files dependency: The build process needs to know whether a 
Unimal source file needs to be processed when an include file changes. To assist with the 
task, Unimal can create a list of fully qualified names of files included while processing the 
input file. The list is saved in the file specified by the –d or –D option.

The only difference between –d and –D options is on Windows platforms: -d produces native 
fully qualified pathnames (like C:\foo\Bar) but –D drops the drive letter and converts 
backslashes to slashes (like /foo/Bar) to produce Unix-like names. This is provided as 
assistance to multiplatform development with isomorphic project directories structures.



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

22

Notes:
1. Unimal doesn’t create directories; if the dependency filename contains path, the path 

must exist or Unimal will fail.
2. The –d, -D options are optional; if not specified, no dependency file will be created. 

However, you can specify more than one option; the last one takes effect.

3.4. –p option
By default, file names maintained by Unimal for error messages and “automatic” macro 
parameters are in exactly same form as supplied in the source file(s) and the command line.

If, however, -p option is used, Unimal maintains fully qualified pathnames instead.

3.5. -N option
This option has a format –N<name>=<value>, e.g.
-Nmyvar=-2007
The effect of it is that the named macro parameter (e.g. myvar) gets the specified numeric 
value (e.g. -2007). The value must be a decimal number within the 32-bit range (see Set
operator).
Any number of -N options is allowed; if they assign values to the same parameter, the last 
assignment takes effect

3.6. -S option
This option has a format –S<name>=<string>, e.g.
-Smyvar=year2007ishistory
The effect of it is that the named macro parameter (e.g. myvar) gets the specified string 
value (e.g. year2007ishistory). It is equivalent to
#MP Setstr myvar=”year2007ishistory” in the source file.

Note that the string value itself is not quoted. However, the string visible to Unimal is what 
comes through the command interpreter (shell). 
On Linux platforms it is safe to always quote the string and escape literal quotes in it with a 
backslash. E.g., from
-Sfoo=”bar: \”baz\”” on the command line Unimal will see
-Sfoo=bar: ”baz” which is equivalent to
#MP Setstr foo=#@ bar: ”baz”# in the source file.
Windows default shell, CMD.EXE, has some bizarre rules governing the quotes and it may 
refuse to strip them when you least expect it, e.g. when a string is invented by a makefile 
or your Integrated Development Environment. Be aware of this.

3.7. -f option
The -f<filename> option reads the command-line options from the named file. This 
eliminates any limitations on the length of the command line and the possible unpleasant 
dealings with the idiosyncrasies of the command interpreter. 

There may be more than one -f option on the command line and the use of this option is 
allowed within an options file. However, recursive inclusion of options files is not allowed 
(and it is senseless anyway).

An options file is processed as follows:
 Each line in the file must be shorter than 5 K



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

23

 Each line is stripped of the leading white spaces
 If a stripped line is empty or starts with a semicolon (;) or a pound sign (#), it is 

considered a comment and is ignored
 A (stripped) non-comment line is considered to contain a single option
 Strings (parameter names, file names and directory names) are not quoted even if 

they contain spaces. Leading and trailing spaces, if any, are considered part of a 
string. Otherwise, trailing spaces are illegal. The first equal sign (=) separates the 
parameter name and the value for the options –S and –N. Trailing spaces are not 
allowed for the –N option.

Examples:
-N mine = 2 <EndOfLine> - invalid (has a trailing space)
-N mine = 2<EndOfLine> - a parameter oddly named “ mine “ (with a leading and a trailing 
space) gets the value 2
     -IMy Best Folder Ever <EndOfLine> makes Unimal search the directory “My Best Folder 
Ever “ (with a trailing space as written) for include files
   My Source<EndOfLine> instructs Unimal to process the source file “My Source” (without 
leading spaces)

3.8. Default output
Unimal’s output goes to the standard output device (STDOUT, typically, a console, unless 
the output is redirected) until Unimal encounters an Export statement. After that, the output 
is sent to a file or to a console as controlled by the source file.

3.9. Error reporting: Unimal.err
On completion, Unimal returns a return code, which is a zero if no errors were encountered. 
In case of errors, Unimal returns a non-zero value. For error details, please see the section 
on error detection and recovery.
Unimal produces a descriptive error message, typically, no more than one per line of the 
source to avoid over-reporting induced errors.

Identical error messages are output to one or more of the following:
 Standard error device (STDERR, typically, a console)
 The Unimal output (standard output or a file requested in an Export statement
 The file Unimal.err which is created in the current working directory.

The file Unimal.err collects all errors in one place regardless of the number of output 
files.



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

24

4. Unimal language reference guide

4.1. General
Unimal is designed as a macro language extension of a target programming language, 
independent of that target language. Unimal pre-processor processes the input stream 
consisting of the input file and any include files encountered. It sends the output to the 
output stream, which is by default the standard output, but which can be redirected to one 
or more output files using the means of the Unimal language.

Unimal language consists of two inter-related parts: Unimal operators and Unimal target 
language interface. 

Unimal target language interface consists of a special mark-up signatures highly unlikely to 
be met in a programming language, followed by a Unimal macro parameter (compile-time 
variable) equipped with instructions (format) how to send it to the output stream.

Unimal operators control the way the input stream is processed and calculate the macro 
parameters used both internally and in the target language interface. 

Macro parameters are analogous to variables in programming languages, except that all 
values are known at processing (compile) time. All macro parameters have global scope 
within the file where they are defined, but they cannot be shared across the files other than 
by means of shared include files.

4.2. Literals

4.2.1. Numbers
Unimal supports decimal and hexadecimal number literals. 

A decimal number is represented by digits 0 to 9 and must be in the range from 0 to 
2,147,483,647. (Unlike C, a decimal number can start with a 0.) 
Examples:

01234, 1717

A hexadecimal number is represented by digits 0 to 9 and A to F (case-insensitive) and is 
preceded by 0X (or 0x). It must be in the range 0x00000000 to 0xFFFFFFFF. The numbers 
in the range 0x00000000 to 0x7FFFFFFF are considered positive, and in the range 
0x80000000 to 0xFFFFFFFF, negative in 2’s complement representation. 
Examples:

0xab, 0XCDEF

Notes:
1. Please note that e.g. -5 is not a literal: it is an expression. Expressions are described 

further below. The distinction matters very little though.
2. An odd consequence is that the number -2147483648, which is the smallest numeric 

value Unimal supports, cannot be used literally. A workaround is to use 
-2147483647-1 or 0x80000000.



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

25

4.2.2. Strings
String literals in Unimal are any sequences of characters enclosed between the left and the 
right delimiter. One pair of delimiters is very common: both left and right delimiters are 
double-quotation marks (“). A literal quotation mark character in a string is represented by
doubling the character. E.g.: 

 “Unimal” is a literal string representing the text Unimal
 “””Unimal”” is a macro processor” is a literal string representing the text “Unimal” is 

a macro processor

There is a known problem with any method of escaping the delimiter character; anyone who 
wrote, say, inline sed command within a makefile knows it. The problem is that a string may 
be a part of a literal in a programming language or of a shell command; the literal delimiter 
there must be escaped, so in a second-order language it must be escaped twice, etc. This 
quickly makes the string absolutely unreadable.

Unimal addresses this problem by supporting a pair of quite unusual delimiters: #@ and #. 
Any ‘#’ character that is a part of the string must be doubled. 
Examples:

#@ Unimal# #@Problem set ## 11#

Up until now, we avoided a question of what a character is. 
In Unimal, a character is whatever symbol you can type in your programmer’s editor. (This 
will almost universally include the ASCII character set, unless you are working on an 
EBSDIC machine.)  Note that if your editor supports a multi-byte character encoding, such 
as UTF8, then such characters are valid Unimal characters but may appear differently in a 
different editor.

4.3. Macro parameters (compile-time variables)
Unimal macro parameters (sometimes referred to as compile-time variables) are named 
objects which can hold:

 a numeric value in the range -2,147,483,648 to 2,147,483,647, and/or
 a character string of single-byte characters, and/or
 a macro definition

What are the legitimate names for macro parameters is described further below.

Note that a macro parameter can hold a value of different “types” at the same time; which 
value is used depends on the context.

See also:
Macros, simple names, composite names

4.4. Simple Names
Simple names in Unimal are words composed with letters A-Z, a-z, digits 0-9 and the 
underscore ‘_’, and cannot start with a digit. Names in Unimal are case sensitive. Examples:

_01234 AtoZ

Example with errors:
0string 1step (starts with a digit)
str!ng (contains an illegal character)



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

26

A very special type of a simple name is a decimal number between 0 and 999 enclosed 
between the ‘#’ characters. This type of names is allowed only inside a macro body and is 
used to denote a formal argument, which is replaced with the corresponding actual 
argument during macro expansion. Examples:

#003# - third formal argument,
#99# - ninety-ninth formal argument.

Note that leading zeros have no effect; it’s the numeric value that matters.

#0# has a special meaning: it is the number of actual arguments passed to the macro. 

See also:
Macros, composite names

4.5. Formats
Formats are special character strings used for rendering Unimal macro parameters. They 
are used both in Unimal statements (operators) and in the target language interface. Unimal 
supports the simplest formats of C printf variety and an additional format.

4.5.1. %s
The format %s is used to render the string value of a macro parameter. If the actual 
parameter does not have a string value, Unimal generates an error. Example:

%s#1#
produces a string passed as the first macro argument.

See also:
Macros, Target language interface.

4.5.2. %d, %u, %x, %X
The %d, %u, %x and %X formats are numeric formats used to render numeric macro 
parameters in printable format. %d renders a (signed) decimal number, %u, an unsigned 
decimal number, and %x and %X, an unsigned hexadecimal number. The difference between 
%x and %X is that %x prints hex digits A – F in lower case, and %X, in upper case.

It’s worth noting that Unimal prints the value rather blindly, without respect to the 
arithmetic value. For instance, a macro parameter with a value -1 is printed as –1 with %d
and as 4294967295 with %u.

All four of these formats have variants with a 0<width> between a ‘%’ and a format letter, 
where <width> is a digit from 1 to 9. Such a variant will print a numeric value padded with 
zeros so that it has <width> digits. If the value is such that when printed has more than 
<width> digits, no padding occur. In this context, a ‘’ in a negative number counts as a 
digit. Example: a value -29 is printed with %04u as 4294967267, with %04d as -029
and with %04x as ffffffe3.

See also:
Composite names, Target language interface, Macros

4.5.3. %n
The format %n is used to render the name of a macro parameter.



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

27

This is handy, among other things, in debugging macros. For instance, a target language 
line in a macro,
#mp%n#1#  #mp%d#1#
will print the name and the numeric value of the macro’s actual argument 1.

See also:
Composite names, Target language interface, Macros

4.6. Composite names
A composite name is an optional simple name followed with one or more macro parameters 
with simple names rendered with any of the formats. Those rendered macro parameters 
must be already defined. A more formal definition: 
<composite_name> ::= 

<format><simple_name> |
<simple_name><format><simple_name> |
<composite_name><format><simple_name>

Example:
X%uX%06xX

is a valid composite name, and names different macro parameters, depending on the 
numeric value of X. If X is a 17 (11 hex) then X%uX%06xX references X1700000011. 

Another example:
%sX

is a valid composite name, and names different macro parameters, depending on the string 
value of X. If X has a string value “Unimal is a macro processor!” then %sX references a 
macro parameter named
Unimal is a macro processor!

It is worth noting that such a name is not a valid simple name: it contains illegal characters 
(spaces and an exclamation point). So, it cannot be used as a literal (simple) name. Yet, it 
is a valid composite name, and it can be referenced by a different name composition. 
For instance, if X1 and X2 have string values “imal is a macro ” and “processor!” 
respectively, then the composite name Un%sX1%sX2 references the same macro 
parameter as %sX, namely, 
Unimal is a macro processor!

The last example:
foo_%nbar

This simply references a name foo_bar. This in itself has very little value except in 
context of a macro definition, where construct foo_%n#1# references a parameter 
according to the name passed as the first argument in the macro invocation.

Notes:
1. If a composite name is passed as an actual argument to a macro, it is first resolved 

to a simple name and is treated as such inside the macro body, even if it cannot be a 
literal simple name because of illegal characters. For instance, if Z is 2006, and a 
macro is passed the first actual argument Y%dZ and the second actual argument, 



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

28

the string “foo”, then #1#%s#2# is expanded as Y2006foo, even if Z is changed 
inside the macro.

2. One can see some similarities between composite names (with numeric suffixes) in 
Unimal and arrays in “normal” programming languages. In some cases, they are 
similar, but they are not the same. Likewise, there is some similarity between 
composite names (with string suffixes) in Unimal and associative arrays (or Perl-style 
hashes).

See also:
Expand, Simple names, formats

4.7. Target language interface
All lines of the input stream (i.e., original input file or any included files), which are not 
Unimal operators, are considered the lines of the target language.

Unimal copies target language lines to the output stream (i.e., standard output or the file 
specified in the last processed Export operator) while substituting the embedded target 
language interface items with their values printed according to the supplied format.

More precisely, Unimal searches for a signature 
#mp<format><name>

where <format> is a valid Unimal format, and <name> is a simple or composite name, or
#mp{<format><name>}

When either signature is encountered, it is replaced with the value of the named macro 
parameter rendered according to the format.

In the curly braces case, white space characters are allowed anywhere between formats and 
components of a name for better readability.

Examples:
Assuming S has a string value “ABCD” and X has a numeric value 5 and xABCD5 has a 
numeric value 17,
#mp%dx%sS%dX is replaced by 17, and
#mp{%d x  %s S  %d X }U is replaced by 17U.

Note that the braced syntax is necessary if a Unimal target language interface statement 
does not end on a word boundary, as in the second example. In other words, a statement
#mp%dx%sS%dXU 
will use the numeric value of the macro parameter XU (if available, otherwise it is an error). 
This is not what was intended

NOTE. Within a macro body, a formal argument is a valid simple name. During macro 
expansion, it is replaced with the value of the actual argument. As a word of caution, this 
means that if the second actual argument is a composite name, say, a%ub with a value 4, 
then #mp%ux%u#1# means #mp%ux4, and not #mp%ua%ub.

See also:
Formats



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

29

4.8. Numeric Expressions
Expressions are used in some of the Unimal operators, such as Set or If. In their syntax, 
Unimal expressions are very similar to well-behaved integral expressions in the C 
programming language. Unimal syntax is more restrictive, though, to avoid confusing 
precedence rules of C.

4.8.1. Terms and operations
The simplest expressions are primary expressions, or terms. A term is
 A number literal, or
 A macro parameter (with simple or composite name) with a numeric value, or
 An actual argument in a macro expansion which resolves to a numeric value, or 
 A result of evaluating a numeric function (numeric functions are covered in the Built-in 

Expressions section), or
 Any numeric expression enclosed in parentheses

Terms can be operands to operations. A result of an operation is a 32-bit signed integer 
number with 2’s complement representation of negative numbers.

Unimal supports the following groups of operations described next:
 Arithmetic
 Shift
 Bitwise logic
 Comparisons
 Boolean logic

Operations within each group may have natural order of precedence (C-like, but not 
exactly). There is no precedence whatsoever between any two operations of different 
groups. A un-parenthesized mixture of disparate operations is a syntax error.

4.8.2. Arithmetic expressions
Arithmetic expressions are natural expressions with arithmetic operations on terms and 
arithmetic sub-expressions:
 + (Addition or unary +)
  (Subtraction or unary )
 * (Multiplication)
 / (Division)
 % (Remainder)

Unary operations take highest precedence, followed by multiplicative operations (*, /, %), 
followed by additive expressions (+ and ).

Unary operations are right-associative, e.g.,  x is (x).
All binary operations of the same precedence are left-associative, e.g., x*y/u/v is 
((x*y)/u)/v. For instance, 2/4*8 is the same as (2/4)*8 and has a value 0 (recall that 
Unimal does integer arithmetic).

To change the order of operations, the sub-expression to be evaluated first must be 
enclosed in parentheses.

Parentheses can also be freely used to improve readability.



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

30

Unimal detects positive and negative overflow errors in addition, subtraction and 
multiplication. It also detects division by 0 (both on % and on /). As a way to reduce 
ambiguity, the remainder operation requires that the divisor be positive. The remainder is 
always a non-negative number

Note:
1. To avoid ambiguity, Unimal requires that the divisor in the Remainder (modulo) 

operation (%) be positive. The result is always non-negative in the range from 0 to 
(divisor – 1).

4.8.3. Shift expressions
Shift expressions are simple C-like shift operations on terms:

 << (Left shift)
 >> (Right shift)

E.g., a >> b indicates right shift of a by b counts (bit positions). If the shift count is 
negative, the result is the positive shift in the opposite direction by the absolute value of 
counts. E.g. 

a >> (-5)
is the same as

a << 5.
Bits shifted in as a result of operation are always zeros. E.g. (-1)>>31 has a value 1 
because negative numbers are represented in two’s complement format (as is native to 
most computers).
In particular, the result of a shift by 32 or more counts is 0.

There is no precedence among shifts; any un-parenthesized mix is a syntax error.

4.8.4. Bitwise logic expressions
Bitwise logic expressions are a standard fare of C-like bitwise operations on terms and 
bitwise logic sub-expressions:
 ~ (Bitwise negation, or 1’s complement)
 & (Bitwise AND)
 ^ (Bitwise exclusive OR)
 | (Bitwise OR)

Unary negation takes highest precedence, followed by &, followed by ^, followed by |. 
Unary negation is right-associative, i.e., ~~x is a valid (but arguably useless) expression. 
All binary expressions of the same precedence are left-associative, e.g., x&y&u&v is 
((x&y)&u)&v.

To change the order of operations, the sub-expression to be evaluated out-of-order must be 
enclosed in parentheses.

Parentheses can also be freely used to improve readability.

4.8.5. Logical expressions
Logical expressions include:

 comparisons



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

31

 logical negation
 logical AND ‘&&’
 logical OR ‘||’ 
 built-in logical expressions (covered in the Built-in Expressions section)

4.8.5.1. Comparisons

Comparisons of operands a and b are 
a<b (less than)
a>b (greater than)
a==b (is equal to)
a!=b (is not equal to)
a<=b (less than or equal to)
a>=b (greater than or equal to).

Valid operands for comparisons are:
 terms
 arithmetic expressions

E.g., x+3<4 is a valid expression but x|3 < 4 is not. (But then again, (x|3) < 4 is valid.)

The logical value of a comparison is a 1 if the comparison is true or 0 otherwise. 
Comparison operands, like operands of any other numeric operation, are signed numbers.

There is no precedence among comparisons; any mix is a syntax error.

4.8.5.2. Negation ‘!’

Negation operation is applicable to
 an atomic expression (including numeric and logical built-ins), or
 another negation

 It has the highest precedence. Syntax:
!<atomic_expression>

It converts the expression’s type to “logical expression” and makes the result a 1 if the 
expression evaluated to zero, and a 0 if the expression evaluated to non-zero. 
Examples:

!3 evaluates to 0
!(3>5) evaluates to 1
!3>5 is a syntax error: there is no precedence resolution between ‘!’ and ‘>’. 

The negation operation is right associative, i.e., !!x is !(!x).

4.8.5.3. Logical AND ‘&&’ and OR ‘||’ expressions

Basic logical expressions (negations and comparisons), as well as terms, can be combined in 
more complex expressions using logical AND and OR operations. Both are left-associative, 
e.g., a&&b&&c is (a&&b)&&c, and && takes precedence over ||, i.e., a||b&&c is a||(b&&c).

A (logical) value of a non-zero term in a logical expression is 1.



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

32

To change the order of operations, parentheses can be used.

Parentheses can also be freely used to improve readability.

4.9. String Expressions
A Unimal string expression is

 a string literal, or
 a macro parameter which holds a string value, or
 a built-in string expressions (covered in the Built-in expressions section)

A string literal has two forms. 
One form is a quoted string, like “foo”; a literal quote must be doubled, e.g. 
“””Quoted”””.
The other form is delimited by #@ and #, like #@foo#; a literal # must be doubled, e.g. 
#@Train ##5#.

4.10. Attributes
A compile-time variable can have one or more of the following attributes:

 NUM, if it holds a numeric value, and/or
 STR, if it holds a character string, and/or
 MAC, if it holds a macro definition

An attribute list is one or more of the attributes separated by commas and enclosed in curly 
braces, e.g. {STR} or {NUM, MAC}. Technically, attributes can be repeated in a list, as in 
{NUM, NUM} but the repeated entry has no effect.

4.11. Built-in Expressions

4.11.1. Logical built-ins

4.11.1.1. Defined

The syntax of the Defined expression is
Defined(<macro_parameter><attribute_list>)

The value of the expression is a 1 if the macro parameter has a value corresponding to any
of the attributes in the list; it is a 0 otherwise.
Example:

Defined (foo {MAC, NUM}) is a 1 if foo has a numeric value or if there is a 
macro defined with the name foo.

The attribute list may be omitted; in this case the default list {NUM, STR} is assumed.

4.11.1.2. Isconst

The syntax is
Isconst(<expression>)

The value of the expression is a 0 if the argument expression happens to be a macro 
parameter or a 1 otherwise (i.e. a literal or a non-trivial expression).



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

33

This built-in is only useful within a macro, such as when we want to know whether a value 
of #3#, the third argument, can be modified. This of course may change from one macro 
invocation to another.
Examples:

Isconst(“foo”) is a 1
Isconst(foo) is a 0 and is well-defined whether foo was ever assigned a value

4.11.2. Numeric functions
The common syntax of numeric functions is

<function>(<argument list>)

The argument list is a comma-separated list of expressions which must have types 
(attributes) according to the function.

4.11.2.1. Math functions

All math functions in Unimal take four numeric arguments. 
A calculation of the Unimal <function>(a, b, c, d) is performed as the integer floor 
(largest integer no greater than) of the mathematical expression 

)(
d

c
function

b

a


where a, b, c, d are floating-point representations of the integer arguments a, b, c, d 
respectively. Therefore, the second and the fourth arguments (b and d) must be non-zeros. 
Below is the table of supported math functions in Unimal:

Unimal function Calculates Math function Valid arguments

Usin(a, b, c, d)








d

c

b

a sin
sine

22 
d

c

Ucos(a, b, c, d)








d

c

b

a cos
cosine

22 
d

c

Uasin(a, b, c, d)








d

c

b

a
arcsin



arcsine
11 

d

c

Uacos(a, b, c, d)








d

c

b

a
arccos



arccosine
11 

d

c

Uatan(a, b, c, d)








d

c

b

a
arctan



arctangent

Uexp(a, b, c, d)








d

c

b

a
exp

exponent

Ulog(a, b, c, d)








d

c

b

a
log

Natural 
logarithm 0

d

c

Usqrt(a, b, c, d)

d

c

b

a


Square root
0

d

c



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

34

If argument(s) do not meet the conditions in the “Valid arguments” column, Unimal 
generates an error. If the arguments are valid but the function evaluation causes 
overflow or underflow in floating point arithmetic, then Unimal tacitly uses a zero for 
both underflow and overflow. An error is generated on overflow, but not on underflow.

See also:
Names, numeric expressions

4.11.2.2. Misc. functions

Currently, Unimal defines one “miscellaneous” function – Ustrlen. It takes one argument 
– a string expression - and returns a number equal to the length of the string in one-byte
characters.

If your programmer’s editor supports multi-byte characters (such as UTF8-encoded), you 
can enter them in a Unimal string literal, but Ustrlen will return the number of raw bytes 
in the string, not the number of encoded characters.

4.11.3. String expressions
Unimal string expressions have a common syntax of a comma-separated list of expressions 
in curly braces, where the first expression must be a named macro parameter:

{<name>, <expression>, ..., <expression>}

The <name> determines the expected number and types of expressions, and the actual 
operation performed on them.

4.11.3.1. Name-to-string conversion

Syntax:
{<name>}

Value:
A string containing the <name>

4.11.3.2.  Substring extraction uSubstr
Syntax:

{uSubstr, <string>, <start>, <end>}
Arguments:

<string> - a string expression
<start> - ordinal number of the first character of the substring
<end> - ordinal number of the last character of the substring, minus 1

Value
A string starting with <start>-th and ending with the (<end>-1)-th character of the 

<string>. However, if <start> is greater than <end>, they are swapped and the characters 
in the substring appear in reverse order. 
Character numbers are 0-based and extract nothing outside the string.

Example: Processing the following file:
#MP Setstr s = {uSubstr, "abcdefgh", 1, 100}
[#mp%ss]
#MP Setstr s = {uSubstr, "abcdefgh", 100, 1}



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

35

[#mp%ss]
#MP Setstr s = {uSubstr, "abcdefgh", 1, 7}
[#mp%ss]
#MP Setstr s = {uSubstr, "abcdefgh", 7, 1}
[#mp%ss]
#MP Setstr s = {uSubstr, "abcdefgh", 100, 200}
[#mp%ss]
#MP Setstr s = {uSubstr, "abcdefgh", 200, 100}
[#mp%ss]
#MP Setstr s = {uSubstr, "abcdefgh", -4, 4}
[#mp%ss]
#MP Setstr s = {uSubstr, "abcdefgh", 4, -4}
[#mp%ss]
#MP Setstr s = {uSubstr, "abcdefgh", 4, 4}
[#mp%ss]

gives this output
[bcdefgh]
[hgfedcb]
[bcdefg]
[gfedcb]
[]
[]
[abcd]
[dcba]
[]

4.11.3.3. Concatenation uJoin
Syntax:

{uJoin, <string>, …, <string>}
Value:

Concatenation of all strings in the list. If, however, a macro parameter uJoin has a 
string value, this value is inserted between any two consecutive <string>s.

Example: Processing the following file:
#MP Setstr s = {uJoin, "This", "made", "my", "day"}
[#mp%ss]
#MP Setstr uJoin = " "
#MP Setstr s = {uJoin, "This", "made", "my", "day"}
[#mp%ss]

gives this output
[Thismademyday]
[This made my day]

4.11.3.4. Simplified Concatenation

Syntax:
<string> <separator> <string> <separator> … <string>



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

36

A <separator> can be a space or a tab character or a + sign, with any number of 
additional spaces or tabs around.

This syntax is valid only in Setstr operator.
Value:

Concatenation of all strings in the list.

4.11.3.5. Splitting a string uSplit
Syntax:

{uSplit, <string>, <chop string>, ..., <chop string>}
Value and side-effects:

This expression finds the first occurrence of any of the <chop string>s in the <string>. 
If more than one <chop string> matches at the same place, the first longest match is 
taken.
The macro parameter uSplit is given a numeric value – the 0-based number of the 
matching <chop string>.
If <string> is itself a macro parameter, it, too, gets a numeric value – the position in 
the <string> just beyond the match.
The value of the expression is the segment of the <string> before the match.
If no match is found, uSplit gets a negative value and the value of the expression is the 
whole <string>.
Caution: an empty string (“”) matches at the beginning of the <string> and the return 
value is an empty string.

Example: Processing the following file:
#MP Setstr s = #@qwertyuiop#
#MP Setstr s1 = {uSplit, s, #@ty#, #@tyu#}
Segment is #mp%ss1
Best-match string is #mp%duSplit
Remainder is at #mp%ds
#MP Setstr r = {uSubstr, s, s, 1000}
Its value is #mp%sr.

gives this output
Segment is qwer
Best-match string is 1
Remainder is at 7
Its value is iop.

4.11.3.6. Defined encoding

Syntax
[<numeric expression>]

Value:
A single-character string with the character encoding being the least significant byte 
of the <numeric expression>

Example:
#MP x=0x10B
#MP Setstr y = [x*x]

x*x is 0x11679 and its least significant byte is 0x79. So y is a string whose single character 
is encoded as 0x79. If the character encoding happens to be ASCII, y has a value “y”.



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

37

This feature is useful in creating and manipulating “texts” displayed on the devices with 
fixed encoding.

4.12. Unimal Operators
Unimal operators, or statements, are identified by the signature #MP in the beginning of the 
line (after optional leading white spaces). They control how the output stream is generated 
but do not produce any output by themselves.

It is a general rule that white spaces are optional (unless necessary as separators) and can 
be added freely as desired. In particular, a white space between the signature #MP and the 
operator keyword is optional.

All Unimal operators are line-based. There is no line continuation feature in Unimal 
operators. 

All characters of a Unimal statement line past the semicolon ‘;’ are considered comments 
and ignored by Unimal. 

Unimal offers a standard fare of block operators (loops and conditional executions; that is to 
say, rescanning a segment of input and conditional expansions) and an advanced macro 
facilities. A unique feature is that a macro may contain a partial block (e.g. beginning of a 
loop). A constraint by design is that any input file (whether the file supplied to Unimal or a 
directly or indirectly included file) must have, after all macros are expanded, only complete 
blocks, if any. That is, it cannot have e.g. a dangling If for which there is Endif or vice 
versa.
Here is an example (necessarily with forward references):
Foo.u 
#MP Macro foo
#MP If 0
#MP Endm

Bar.u:
#MP Include “Foo.u”
#MP Expand foo
#MP ;Error 2000 – unmatched If after macro expansion

Baz.u
#MP Include “Foo.u”
#MP Expand foo
#MP Endif ;closes the If block opened by the macro expansion
#MP ;OK

4.12.1. Empty operator
Syntax:

#MP
Description

The empty operator doesn’t do anything. Properly indented, it comes handy as a line 
spacer not copied to the output stream. It is also useful for long single-line 
comments of Unimal code.



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

38

4.12.2. For
Syntax:

#MP For <name>=<expression1>, <expression2>
Description

The For operator defines a macro parameter <name> (unless already defined), assigns 
it the value of numeric <expression1>, captures the current value of numeric 
<expression2> and starts the For loop block terminated by the matching Endfor. 
The block is processed repeatedly zero or more times for every value of the macro 
parameter <name> from the initial value and to the initially captured value of the 
<expression2> inclusive. The loop counter <name> is incremented by 1 
automatically when the Endfor is processed. The loop counter can be manipulated 
within the loop body, in which case the number of times the body is processed is 
manually controlled.

See also:
Endfor, numeric expressions, names

4.12.3. Endfor
Syntax:

#MP Endfor
Description

Ends the For loop block started by the matching For operator (in the same level of 
operator nesting). The block is processed repeatedly zero or more times for every value 
of the macro parameter <name> from the initial value equal to the <expression1> 
and to the previously captured value of the <expression2> inclusive. The loop 
counter <name> is incremented by 1 automatically when the Endfor is processed. 
The value of the loop counter upon exit from the loop is one greater than the 
<expression2> in the matching For operator, unless
 The loop executed zero times. In this case, the loop counter remains equal to the 

initial value (<expression1> in the matching For operator).
 The loop is modified manually within the loop body. In this case, it may be the last 

assigned value.

See also:
For

4.12.4. Repeat
Syntax:

#MP Repeat
Description

This operator marks the beginning of the Repeat/While loop block which ends with a 
matching While operator. The block is processed repeatedly one or more times 
depending on the decision made by the matching While.

See also:
While



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

39

4.12.5. While
Syntax:

#MP While <expression>
Description

The While operator marks the end of a Repeat/While loop. It evaluates the numeric 
<expression>, and if the result is non-zero, continues processing from the matching 
Repeat statement.

See also:
Repeat, numeric expressions, names

4.12.6. If 
Syntax:

#MP If <numeric expression>
Description

Begins an If/Else/Endif block. If the <expression> evaluates to non-zero, the 
block between If and Endif or optional Else is processed, otherwise, it is skipped. 

See also:
Else, Endif, numeric expressions

4.12.7. Else 
Syntax:

#MP Else
Description

Begins an optional Else part of an If/Else/Endif block of the same level of 
operator nesting. If the corresponding If or Ifdef operator evaluated to true 
condition, the block between Else and Endif is skipped; otherwise, it is processed. 

See also:
If, Ifdef, Endif

4.12.8. Endif 
Syntax:

#MP Endif
Description

Ends an If/Else/Endif block of the same level of operator nesting.
See also:

Else, If, Ifdef

4.12.9. Ifdef
Syntax:

#MP Ifdef <name> <attributes list>
Description

This is simply shorthand for 
#MP If Defined(<name> <attributes list>)



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

40

The attributes list may be omitted; in this case the default list {NUM, STR} is 
assumed.

See also:
Else, Endif, names

4.12.10. Set
Syntax:

#MP Set <name>=<expression>
#MP Compute <name>=<expression>
#MP Set <name> <expression>
#MP Compute <name> <expression>
#MP <name>=<expression>

Description
Defines the macro parameter <name> (if not already defined) and assigns it the value 
of the numeric <expression>. All forms are equivalent. Set and Compute are 
synonyms. 
Note that either Set (Compute) or the equal sign can be omitted, but not both.

See also:
Names, numeric expressions

4.12.11. Setstr
Syntax:

#MP Setstr <name>=<string expression>
#MP Setstr <name> <string expression>

Description
Defines the macro parameter <name> (if not already defined) and assigns it the value 
of the <string expression>. Note that the equal sign may be omitted.

See also:
Names, expressions

4.12.12. Macro
Syntax:

#MP Macro <name>
Description

Starts a definition of a macro, which ends with the Endm operator. Valid only outside of 
any other macro definition (in other words, macro definitions cannot be nested). The 
content of the macro definition block is completely ignored until the macro is expanded 
(see Expand). Within a macro body, special rules apply to Unimal names.
A macro definition cannot span across different files (such as the beginning in one 
include file, and the end, in another).
Note: A macro definition placed inside an If/Else or a For block is noticed only when 
the block is processed (i.e., when the block condition is true).



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

41

See also:
Names, Endm, Expand

4.12.13. Endm
Syntax:

#MP Endm
Description

Ends a definition of a macro which begins with the Macro operator. 
See also:

Names, Macro, Expand

4.12.14. Expand (non-recursive)
Syntax:

#MP Expand <name>(<arguments>)
#MP <name>(<arguments>)
#MP Expand <name>
#MP <name>

Description
<name> is an already defined name of a macro or a string expression evaluating to a 
name of an already defined macro. <arguments> is a comma-separated list of 
arguments, which can also be empty (and if it is empty, parentheses may be omitted). 
The keyword Expand is optional and may be omitted a matter of style.

Syntactically, an argument can be any valid Unimal expression.

The Expand operator replaces itself with a literal expansion of (a copy of) the body of 
the named macro as follows:

First, all actual arguments are evaluated. 
If an argument is a macro parameter, its (composite) name is resolved to a simple name 
using the values of other parameters currently in effect. E.g., assuming bar is 5 and baz
is “dude” foo%dbar%sbaz is replaced with foo5dude. (Simple names therefore 
remain unchanged.)
If, on the other hand, an argument is a numeric or a string expression, the expression is 
evaluated using the current values of its operands.

For example, the two Expand operators below are equivalent
#MP narg = 5
#MP Setstr sarg = “the argument”
#MP Expand foo(narg, sarg%dnarg, narg+1, {sarg})
#MP foo(narg, sarg5, 6, “sarg”)

Second, the Expand operator substitutes any formal arguments within the macro body 
with the corresponding (resolved) actual arguments from the argument list. Therefore, 
the type and the number of actual arguments must match the use of formal arguments 
in the macro body. Any mismatch is likely to cause a syntax error which is occasionally 



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

42

difficult to trace. On rare occasions, a mismatch may produce a syntactically correct 
expansion with unexpected values.

Notes:
1. Operator blocks (If/Else/Endif or For/Endfor) can span different macros, 

perhaps, in different levels of macro nesting (or be partly outside of any macros). 
2. A macro parameter, such as sarg5 in the example above, doesn’t have to be 

defined before being passed as an argument to a macro.
3. A macro expansion cannot be recursive (directly or indirectly), i.e. an Expand

operator may not occur in the expansion of the macro with the same name.

See also:
Names, Numeric expressions, Strings, Endm, Macro, Target language interface

4.12.15. Expand (possibly recursive)
Syntax:

#MP Expand <name>[<arguments>]
#MP <name>[<arguments>]

Description
This form of the Expand operator syntactically differs from a non-recursive form above 
in that the argument list is passed in square brackets instead of parentheses, and an 
empty argument list cannot be omitted.

In a normal (non-recursive) form of the Expand operator, a macro must be expanded 
normally even if the operator is in a false block of an If operator because the expansion 
may yield e.g. an Endif for that block buried perhaps in some contained macro.

The result of this is that any recursive expansion of a macro would automatically 
produce an endless recursion. Unimal detects an Expand operator what would cause a 
recursion, generates Error S2022, and skips the expansion.

To instruct Unimal that there is no unbalanced block elements in the macro to be 
expanded (including nested macros), you must use the bracketed variant of the Expand
operator. With it, Unimal skips the expansion in a false block and performs a perhaps 
recursive expansion in a true block. 

With the exception of the recursion and false block treatment, the bracketed variant of
the Expand operator is equivalent to the normal parenthesized variant. However, it 
may be worth noting that this bracketed variant of the Expand operator is slightly 
faster.

4.12.16. Include
Syntax:

#MP Include <string expression>
Description

The Include operator switches the input stream from the current file to the file 
specified in the <string expression>. It is also fair to say that Include literally 
expands the whole include file in its place.



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

43

The interpretation of the filename depends on the operating system, and what is a valid 
filename on one platform can be invalid on another. See the section Invoking Unimal on 
how the include file is searched.

See also:
Strings, Macro

4.12.17. Export
Syntax:

#MP Export (numeric expression) <string expression>
#MP Export Push
#MP Export Pop

Description
The first form of the Export operator switches the output stream from the current file 
to the file specified in the <string expression>.

The numeric expression must be enclosed in parentheses. If it evaluates to non-
zero, then the Unimal output is appended to the existing file (if it already exists). 
Otherwise, the output file is overwritten from the beginning.

NOTE. Redefining the current output file with the same file (with the zero-valued 
expression) causes the previous output to this file to be lost.

The interpretation of the filename depends on the operating system, and what is a valid 
filename on one platform can be invalid on another. See the section Invoking Unimal on 
where the output file is placed.

Special case: When the <string> is empty (i.e., is literally equal to “” or #@#), the 
output stream is sent to the standard output, which is the default. On the command line 
level, you can redirect standard output to a file of your choice.

The new output file remains in effect until redefined by another Export operator.

The second form of the Export operator saves, and the third form restores the output 
file information. Presumably, the output file is pushed, then replaced with some other 
file and then popped to continue output to it. Export Pushes/Pops can be nested.

See also:
Strings

4.12.18. End
Syntax:

#MP End
Description

The End operator is a common synonym of Endfor and Endif: Whenever you’d use 
Endfor or Endif, you can use End.



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

44

(In fact, the End operator is primary, and Endfor and Endif are its synonyms. This 
means that it is legal to close the For block with Endif and the If block, with 
Endfor. Obviously, it is not a good idea.)

See also:
Endfor, Endif

4.12.19. Undef
Syntax:

#MP Undef <name> <attributes list>
Description

The Undef operator undefines a name (in the “namespace” of each attribute in the list). 
If the name was not previously defined, the Undef has no effect.

The <attributes list> may be omitted; in this case the default list {NUM, STR}
applies.

Example
To ensure a macro definition does not collide with a previous definition, we can go 
brutal:
#MP Undef foo{MAC}
#MP Macro foo
..................

See also:
Set, Setstr, For

4.12.20. Save
Syntax:

#MP Save <name>

Description
The Save operator saves all defined values of the named parameter. Its purpose is to 
restore the saved values with Restore.

See also:
Restore

4.12.21. Restore
Syntax:

#MP Restore <name> <attributes list>

Description
The Restore operator restores the named parameter’s values with the given
attributes. 



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

45

If the previously Save’d value with some attribute was not defined, any current 
definition is lost: in this case Restore acts like Undef.
If the name was not previously Save’d, it is treated as saved with all undefined values, 
and the Restore acts exactly like Undef with the same attributes.

The <attributes list> may be omitted; in this case all saved values {NUM, STR, 
MAC} are restored.

Examples
The following shows what happens with the definitions of previously undefined foo:
#MP foo = 9
#MP Restore foo {MAC} ;foo (numeric) is 9
#MP Save foo
#MP Undef foo
#MP Setstr foo “hello”
#MP Restore foo ;string value is lost, numeric value is 9

The following temporarily redefines a macro foo:
#MP Save foo
#MP Macro foo
<new definition>
#MP Endm
<do something with the new version of foo>
#MP Restore foo {MAC}
<do something with the original version of foo>

See also:
Save, Undef, Attributes

4.13. A useful shorthand for a list of arguments
It is not unusual within a macro expansion to pass a number of consecutive arguments to a 
nested macro. Unimal offers a shorthand for it, in the form [m:n], where m and n are 
numeric expressions. E.g., to invoke some macro FOO with parameters 3, 5, all the 
arguments of the current macro, and 6, we can write:
#MP Expand FOO(3, 5, [1 : #0#], 6)

The [m:n] syntax can be used where a comma-separated list of parameters is used, e.g., 
in string expressions. 
Outside of a macro expansion, [m:n] always produces an empty sub-list of arguments 
regardless of (valid) values of m and n. Inside a macro expansion, if m<1 it is replaced with 
1, and if n>#0#, it is replaced with #0#, the total number of actual parameters in the 
current macro expansion. If m>n, the sub-list is empty.

Here is a simple example where this syntax is useful. Consider a macro FOO which invokes 
one of the other macros (FOO1, FOO2 …) depending on the value of the first argument, and 
passes the rest of the arguments for processing. The idea is to put in the definition of FOO 
something like
#MP Expand FOO%d#1#(?)
But – what goes in place of the question mark?



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

46

Without the shorthand, we had to write:
#MP If #0#==1
#MP Expand FOO%d#1#()
#MP Endif
#MP If #0#==2
#MP Expand FOO%d#1#(#2#)
#MP Endif
#MP If #0#==3
#MP Expand FOO%d#1#(#2#, #3#)
#MP Endif

… And so on. That’s cumbersome and not maintainable. With the shorthand, we can write 
simply
#MP Expand FOO%d#1#([2:#0#])

4.14. Special macro parameters
There are several macro parameters which Unimal treats in special ways:

 uErrorFormat
 uAutoLine
 uAutoLineOut

uErrorFormat, if it has a string value, changes the default format of Unimal error 
messages; see Section Error message format mimicry.

Description of the other specially named macro parameters follows.

4.14.1. uAutoLine
Unimal automatically maintains the file name and the line number currently being 
processed. They are accessible as the string value and as the numeric value respectively of 
the macro parameter named uAutoLine.
If the macro uAutoLine is defined (by the programmer), Unimal automatically expands it 
whenever line numberings of the input and of the output diverge. During automatic 
expansion of the uAutoLine macro, including expansion of its nested macros (if any), 
both numeric and string values of uAutoLine are frozen.

This seemingly odd feature is designed to provide a flexible method of emitting input 
file/line information into the output stream, such as e.g., #line directives in C-like 
languages.

Assuming for an example that the target language is C, the programmer could put a target 
language interface line
#line #mp%uuAutoLine "#mp%suAutoLine" 
anywhere she likes to ensure the synchronization.

If, however, it is put in the uAutoLine macro:

#MP Macro uAutoLine



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

47

#line #mp%uuAutoLine "#mp%suAutoLine" 
#MP Endm

then the synchronization #line statements will be emitted automatically as needed.

Notes: 
1. Notice that the macro uAutoLine takes no arguments.
2. Writing to uAutoLine, like

#MP Setstr uAutoLine = “foo”
does not produce an error but is evil and will be overwritten by Unimal.

3. While a means of automatically emitting the file/line information was a primary 
motivation for automatic expansion of the uAutoLine macro, there is no limitation 
on what exactly this macro does. 

4. It is legal to expand uAutoLine normally, like 
#MP Expand uAutoLine()

4.14.2. uAutoLineOut
Unimal automatically maintains the file name and the line number currently being output. 
They are accessible as the string value and as the numeric value respectively of the macro 
parameter named uAutoLineOut.

The primary purpose of the macro parameter uAutoLineOut is to resynchronize to the 
output file itself after previous synchronization to the input file, e.g., 

#MP Undef uAutoLine {MAC}
#line #mp%uuAutoLineOut "#mp%suAutoLineOut" 

If you need to switch back and forth between synchronization to input and to output, a 
better solution is to make the macro uAutoLine emit one or the other synchronization 
directive (or none at all). This issue may be covered in greater detail in an application note.

The string value of uAutoLineOut is updated only when the output filename changes, so 
writing to it is even more evil than writing to uAutoLine.



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

48

5. Error Detection and Recovery

5.1. Error logging mechanism in Unimal
When Unimal detects an error, it uses the corresponding error message for two purposes.

The first purpose is obvious: to point the programmer to the offending Unimal statement 
and to assist with diagnosing the problem.

The second purpose is slightly less obvious. It is to mangle the output file so it does not 
compile as a source code in the target language.

These two purposes somewhat contradict each other: since Unimal can generate multiple 
output files (switched by the Export operator), searching for error messages can be 
troublesome. Besides, if an error occurred in accessing the output file, it would be lost if not 
duplicated elsewhere.

To counter these problems, Unimal logs identical error messages in the current output file 
and in the file with the fixed name “unimal.err.” On top of that, the error is also sent to 
the standard error device (stderr, normally, the console terminal).

This way, no error gets lost, the erroneous output files won’t compile, and the programmer 
has all error messages conveniently collected in “unimal.err.” 

The error file is generated in current working directory. It is overwritten on each run of 
Unimal. To avoid possible confusion, the first line of the file indicates which source file was 
processed. The last line of the file contains the number of errors encountered. Here is a 
sample content of unimal.err:

Processing C:\Projects\Unimal\sample.u ... 

No errors

Unimal outputs all errors in the order of detection. Even though some errors are induced by 
a previous error, the error output allows better understanding of the root cause of the failed 
execution.

Since the Unimal language is line-based, Unimal resynchronizes from an error when it 
reaches the end of the line. 

This is not to say, of course, that Unimal’s error detection is free from induced errors. For 
instance, if a For operator has an error, then there will probably be unmatched Endfor
and numerous instances of undefined loop counter used within the For block.

5.2. Unimal error messages reference

5.2.1. Default format of an error message
Here is an example of a typical Unimal error message:

MP:S2001:remove.u:1 Bad syntax near Incl; statement ignored



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

49

An error message always starts with the signature “MP:” followed by:
 A single-letter error type (in our example, ‘S’) and
 A four-digit error number,
 The current input file name (in our example, file is remove.u) and 
 Line number (in our example, the line number is 1). 

This information is followed by a textual description of the error, including, when applicable, 
the offending element (Incl in our example) and the action taken by Unimal.

Unimal can take one of the three kinds of actions upon encountering an error:
 Abort processing immediately
 Give up and just ignore the offending statement altogether
 Accept part of a wrong input as a valid statement and ignore the remaining part of it.

A typical case of the latter is a forgotten semicolon before a comment in a Unimal operator. 
There are much less innocuous errors of this kind, though.

Below (beginning with Section 5.5.3) is a description of Unimal errors by their type, in 
default format.

5.2.2. Error message format mimicry
In some instances it is desirable to have error format readily understood by an existing 
error parsing mechanism. A typical case is an IDE supplied with your compiler; clicking on 
an error line in the “build output” window takes you to the file and line where an error 
occurred.

To make integration of Unimal with your development tool easier, Unimal allows to redefine 
the error output format. Namely, if a macro parameter uErrorFormat has a string value, 
this string is considered the error format string. An error message is the output format 
string with the following replacements:

 $$ is replaced with $
 $B is replaced with line break (newline)
 $F is replaced with the input file
 $L is replaced with the input line number
 $C is replaced with the error class
 $N is replaced with the error number
 $M is replaced with a descriptive message
 $<any-other-character> is no character at all.

For instance, default error format can be thought of as 
“$BMP:$C$N:$F:$L $M”. 
As a different example, Microsoft C/C++ compiler error format style is achieved with 
“$F($L) : error $C$N: $M”.

Please note that it is possible to set the error format string to something very non-
descriptive, like “Oops!” or even an empty string “”. Unimal doesn’t (and cannot) check the 
sensibility of a user-defined error format; you use custom error format it is your 
responsibility to make it meaningful.



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

50

5.2.3. F type: Fatal file errors
If Unimal encounters any file-related error, it aborts processing immediately and exits. 

This includes not only physical medium errors but also file system errors, such as non-
existing file or too many open files. 

If applicable, the corresponding system error message is appended in parentheses, such as 
“(No such file or directory)”, but be aware that this message can be somewhat 
cryptic.

5.2.3.1. Error 0102 

Message:
No pushed output file to pop

Reason:
Unimal cannot restore output because no output stream was saved.

Action by Unimal:
Continue output to the current output stream send error message to STDERR.

5.2.3.2. Error 0103

Message:
Error reading input <file_name>; aborting

Reason:
Error opening or reading the input file 

Action by Unimal:
Abort processing; send error message to STDERR.

5.2.3.3. Errors 0104, 0105 (output file), 0106 (input file)

Message 0104:
Can't open output <file_name>; aborting

Message 0105:
Error writing output <file_name>; aborting

Message 0106:
Can't access input <file_name>; aborting

Reason:
Unimal cannot write to the specified output file or read from the specified input file. 
For instance, the file is locked by another application or the directory doesn’t exist. 
Alas, you need to look at the system error message appended.

Action by Unimal:
Abort processing; send error message to STDERR.

5.2.3.4. Error 0111 

Message
Error processing command-line option <offending text>

Reason:
Unimal failed to understand a command line argument.

Action by Unimal:
Abort processing; send error message to STDERR. 

5.2.4. Special F type error (Usage syntax)
Message 0099:



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

51

<Short usage help text>
Reason:

Unimal was invoked with incorrect command line arguments.
Action by Unimal:

Abort processing; send error message to STDERR. 

5.2.5. A type: Out of memory
If the computer runs very low on resources, or if your Unimal code uses tons and tons of 
names, macros etc., this type of errors can occur. This is a highly unlikely event.

The error message doesn’t follow a standard scheme; it is simply
Out of memory
printed to STDERR.

Action by Unimal:
Abort processing.

5.2.6. S type: Syntax errors

5.2.6.1. Error 2000 (The file has an unbalanced beginning or end of a block)

Message 2000:
Unbalanced (missing) Endfor/While/Endif/Endm at end of file
Unbalanced (extra) Endfor/While/Endif/Endm at end of file

Reason:
First form: A For or a Repeat or an If (Ifdef) block is not closed at end-of-file, 
or a macro definition is not closed.
Second form: An Endfor, or a While, or an Endif was found that doesn’t have a 
respective For, Repeat, or If (Ifdef) expanded while processing the current file.
In other words, any block (after any macro expansions) must start and end within 
the same input file.

Action by Unimal:
Abort processing.

5.2.6.2. Error 2001 (General syntax error)

Message:
Bad syntax near <text>

This message may be augmented with a more detailed description. 
Reason:

A syntax error in the statement; see important discussion below.
Action by Unimal:

If Unimal recognized a part of the text as a valid statement then the recognized part 
is processed and the remainder of the line is ignored. If Unimal didn’t recognize a 
valid statement (first message), the whole line is ignored. That is, Unimal makes a 
lame attempt to recognize the programmer’s intent. But even so, induced errors are 
not unlikely.

Common syntax errors
Syntax errors can be as simple as a misspelled operator keyword or forgotten semicolon 
before the comment, or they may have other causes, in which case the error message may 
look rather cryptic and confusing.

Essentially, any error in a statement can cause this error. Here are the most common:



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

52

Error Likely <text>

Parentheses forgotten in an operator or 
an expression

<<EOL>> (end-of-line) or ‘;’

Comma between arguments forgotten The first lexical element of the next argument 
or ‘)’

Wrong type of a parameter (see below 
the special discussion on formal/actual 
arguments in macro expansions) 

Whenever it is found, e.g., in
Set 1+X=X it would be a 1, and in
Set X+1=X it would be a ‘+’. 

Expression syntax The first non-blank element after the largest 
recognized part of the expression, e.g., in
Set X=1+1++2 it would be a ‘+’.

Syntax errors in expressions
The second common case of an error is most likely to be induced either by a lexical error, or 
by a syntax error in an expression. For instance, an operator

#MPSet x = 1<1&1
would produce the message

Bad syntax near &; text ignored.

Special case: syntax errors in macro expansions
An offending token that is reported in an error message could be a macro’s formal 
argument, such as #1#.  While it looks confusing, the reason is the wrong argument type. 
For instance, consider this statement in a macro definition:

#MPSet #1# = X%d#2#

This is a perfectly good statement by itself, but it does assume the first actual argument to 
be a macro parameter (to which a value can be assigned), and not an expression. Similarly, 
it assumes the second actual argument to have a numeric value, e.g., to be a macro 
parameter with a numeric value or a numeric expression.

Therefore, when an actual argument 1 is, say, the number 17, and the actual argument 2 is 
the string, say, #@ mystring#, then the statement above would expand to

#MPSet 17 = X%d#@ mystring#

Clearly, it is syntactically wrong on both sides of the equal sign, so an error is reported. 
Again, there is nothing syntactically wrong in the macro definition, but the substitution of 
the formal arguments with actual arguments of unexpected types produced errors. You may 
need to inspect the corresponding Expand operator to trace the problem.

5.2.6.3. Error 2002 (Macro redefinition)

Message:
Macro <macro_name> redefinition; ignored

Reason:



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

53

A macro with this name has already been previously defined or the name has been 
previously used for a macro parameter.

Action by Unimal:
Unimal ignores the redefinition and sticks to the original definition of the named 
macro.

Note: It is not an error to encounter the same macro definition several times (such as when 
a file with the definition is included more than once or when, for some reason, a macro is 
defined within a For loop.

5.2.6.4. Error 2004 (Missing actual argument)

Message:
Missing actual macro arg <number>; 0 assumed

Reason:
A #<number># term was encountered in a macro body during macro expansion 
where <number> is greater than the number of actual arguments.

Action by Unimal:
Unimal assumes the missing argument to be the number 0. In some cases, 
especially when the type guess was wrong, it induces other errors.

5.2.6.5. Errors 2005, 2006, 2007 (Unmatched block operators)

Message 2005:
Unmatched Else; ignored

Message 2006:
Unmatched Endfor/Endif; ignored

Message 2007:
Unmatched Endm; ignored

Reason:
One of the referenced operators was encountered when the corresponding preceding 
If/Ifdef, For or Macro operator was not encountered before.

Action by Unimal:
Unimal ignores the unmatched operator.

5.2.6.6. Error 2009 (Bad macro reference)

Message:
Undefined macro <macro_name>; ignored

Reason:
The Expand operator references a name that was not previously defined as a macro 
name (by a Macro operator).

Action by Unimal:
Unimal ignores the Expand operator.

5.2.6.7. Error 2010 (Unexpected type)

Message 2010:
Expected numeric value; default assumed
Expected string value; default assumed

Reason:
An operand in an expression or a statement was expected to have a numeric or a 
string value respectively, but it didn’t.

Action by Unimal:
A default numeric value (0) or a default (empty) string is used.



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

54

5.2.6.8. Error 2011 (undefined parameter)

Message:
Undefined parameter <parameter_name>; default assumed

Reason:
The macro parameter name was not defined in the “namespace” of the expected 
type.

Action by Unimal:
Unimal assumes a zero numeric or an empty string value.

5.2.6.9. Error 2012 (formatting in composite names or target language interface)

Message:
Rendering format <format> incompatible with suffix type

Reason:
The macro parameter (or an actual macro argument) specified with the <format> 
does not match the type.

Action by Unimal:
Unimal replaces invalid formatting with ******.

5.2.6.10. Error 2013 (expected macro parameter)

Message:
Named parameter expected in this context

Reason:
An expression or a literal found in the context where a named macro parameter was 
expected

Action by Unimal:
Unimal uses an empty name.

5.2.6.11. Error 2014 (expected a numeric)

Message:
Non-numeric unexpected; 0 used

Reason:
A construct that doesn’t resolve to a number is found where a numeric value was 
expected

Action by Unimal:
Unimal uses a 0.

5.2.6.12. Error 2015 (undefined string expression)

Message:
String operation <name> not defined; name used

Reason:
In a string expression there are two or more arguments, and the first argument is 
not one of the pre-defined names.

Action by Unimal:
Unimal uses the name of the first argument as the string value of the expression.

5.2.6.13. Error 2016 (invalid string expression)

Message:
No such string operation: "" used

Reason:



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

55

In a string expression there are no arguments, or the first argument is not a named 
macro parameter.

Action by Unimal:
Unimal uses an empty string as the string value of the expression.

5.2.6.14. Error 2017 (wrong number of arguments to a function)

Message:
Wrong number of arguments to the <name> function; default result assumed

Reason:
In a string expression or in a numeric function, the number of arguments is invalid.

Action by Unimal:
Unimal uses an empty string or a 0 as the value of the expression.

5.2.6.15. Error 2018 (literal number too large)

Message:
Literal number <number> too large; replaced with maximum

Reason:
A very large number, greater than 2,147,483,647, is used as a numeric literal.

Action by Unimal:
Unimal uses 2,147,483,647 as the value of the literal.

5.2.6.16. Error 2019 (string not terminated)

Message:
Literal string [<string>] not closed

Reason:
Probably, a terminating character (a quote or a sharp sign) is missing by the end of 
the line.

Action by Unimal:
Unimal uses <string> it collected to the end of the line as the value of the literal 
string.

5.2.6.17. Error 2020 (Nested macro definition)

Message:
Nested macro definition; ignored

Reason:
A Macro operator was encountered within another macro body.

Action by Unimal:
Unimal ignores the following macro definition up to and including the matching 
Endm.

Note: A nested macro definition complete with Endm should produce an induced error 2007, 
“Unmatched Endm”.

5.2.6.18. Error 2021 (Unmatched While)

Message:
Unmatched While; ignored

Reason:
A While operator was encountered without the matching Repeat.

Action by Unimal:
Unimal ignores the unmatched operator.

5.2.6.19. Error 2022 (Recursive macro expansion)

Message:



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

56

Recursive use of macro <name>; ignored (use [])
Reason:

A () form of Expand operator was encountered such that a recursive expansion 
would occur. 

Action by Unimal:
Unimal doesn’t expand the macro.

5.2.7. L type: Lexical errors
If a sequence of characters cannot be interpreted as a valid element of the language in a 
Unimal operator, then a lexical error 4000 is reported along with the offending sequence of 
characters.
Message 4000:

Unrecognized text "<offending_text>"; ignored
Reason:

Odd characters in the input stream
Action by Unimal:

Unimal ignores the text that caused the error.

5.2.8. M type: Math errors

5.2.8.1. Errors 3500, 3501, 3502 (Arithmetic overflows)

Message 3500:
Addition overflow; result <value> assumed

Message 3501:
Subtraction overflow; result <value> assumed

Message 3502:
Multiplication overflow; result <value> assumed

Reason:
An overflow occurred in a respective operation in an expression.

Action by Unimal:
Unimal assumes the closest valid number in the direction of overflow.

5.2.8.2. Error 3503 (Divide by zero)

Message:
Divide by 0; result 0 assumed

Reason:
An attempt of division by zero is encountered.

Action by Unimal:
Unimal assumes zero result.

5.2.8.3. Error 3504 (Non-positive divisor in remainder operation

Message:
Remainder divisor 0 or negative; result 0 assumed

Reason:
An attempt of remainder (%) division by zero or a negative number is encountered.

Action by Unimal:
Unimal assumes zero result.

5.2.8.4. Errors 3510, 3511, 3512, 3513 (math functions errors)

Message 3510:
Unknown function <function_name>; result 0 assumed



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

57

Reason:
The named function is not a valid name of a Unimal math function.

Message 3511:
Zero denominator; result 0 assumed

Reason:
The second or the fourth argument (a denominator in a ratio) of a Unimal function is 
zero.

Message 3512:
Math argument out of range; result 0 assumed

Reason:
The arguments to the Unimal function are outside of the range specified for that 
function.

Message 3513:
Math overflow; result 0 assumed

Reason:
The mathematical value of the function is outside the range allowed for 32-bit 
numbers.

Action by Unimal:
In all these cases, Unimal assumes zero result.

5.2.9. Internal errors
There are a few safeguard error messages coded into Unimal to trap unexpected problems. 
The corresponding errors should never be encountered. If, however, you see a suspicious 
error message not described above, please, contact MacroExpressions for the problem 
resolution.



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

58

6. Additional facts

6.1. (No) implementation limits
Unimal 2.0 (and higher) does not have implementation-defined limits.

Previous versions had implementation limits on
 How deep include files can Include another include file
 How deep If/Ifdef/For blocks can be nested
 How deep a macro can Expand another macro

These limits were arbitrary and were to guarantee that either Unimal cannot process your 
input or the results of the processing are independent of the machine resources available.

Practical experience has demonstrated that artificial limits are of little (or no) value: if 
Unimal fails due to lack of memory (on today’s machines, a very unlikely event), you will 
know it. If you insist on using that machine, you’ll need to modify the input file.

So, the previous implementation limits have been dropped.

6.2. Tokenization
When Unimal tokenizes the input file, it looks for the longest token it can find, just like C.

For instance, a statement
#MP remainder = dividend%divisor
is not the same as
#MP remainder = dividend % divisor

In the former, the right-hand side is a composite name with the prefix dividend and the 
suffix ivisor rendered as a decimal number, according to the %d format.

It may look strange, but it is no different from C’s
x = y /*p; /* something */;
where intended division by a number pointed to by p is in fact an opening of a comment.

As a general recommendation, simply do not save on blank spaces.

6.3. Including an output file
The following sequence will probably not work:
#MP Export (x) “foo”
Something That Goes To foo
#MP Include “foo” ;re-process the output

The reason is that by the time the include statement is reached Unimal didn’t bother to 
close the file foo, on the grounds that it remains the current output stream. Depending on 
the habits of the operating system, the include statement may fail or it can include an 
empty or only partially written file.

To fix the problem, we have to switch the output away from foo, like



Unimal: Unified Macro Language

© 2000-2008 MacroExpressions http://www.macroexpressions.com

59

#MP Export (x) “foo”
Something That Goes To foo
#MP Export (0) “” ;to standard output
#MP Include “foo” ;re-process the output

While this works, a better way to have a temporary output file is to push and pop the 
previous output stream:

#MP Export Push
#MP Export (x) “foo”
Something That Goes To foo
#MP Export Pop ;closes foo and restores the previous output stream
#MP Include “foo” ;re-process the output


	0. Preliminary Notes
	0.1. What’s New in Unimal 2.1
	0.1.1. Motivation
	0.1.2. Macro definitions
	0.1.3. Macro expansions
	0.1.4. Repeat/While loop construct
	0.1.5. Save and Restore operators
	0.1.6. String expressions
	0.1.7. Syntactic sugar
	0.1.8. Command line switches
	0.1.9. Error reporting
	0.1.10. Bug Fixed in release 2.1 build 231

	0.2. Document conventions
	0.3. Additional Resources

	1. Foreword: What is Unimal?
	2. Quick Start with Unimal
	2.1. Tabulating a function: Unimal loops and built-in math
	2.2. Parameters sharing among languages: Export statement
	2.3. Software distribution: If statement
	2.4. Further applications
	2.5. Highlights of other Unimal language features
	2.5.1. Composite names
	2.5.2. Macros

	2.6. Publishing the indices of array entries to a header file
	2.6.1. A useful design pattern
	2.6.2. Export Push/Pop and string expressions


	3. Invoking Unimal
	3.2. –o and –O options
	3.3. –d, –D options
	3.4. –p option
	3.5. -N option
	3.6. -S option
	3.7. -f option
	3.8. Default output
	3.9. Error reporting: Unimal.err

	4. Unimal languagereference guide
	4.1. General
	4.2. Literals
	4.2.1. Numbers
	4.2.2. Strings

	4.3. Macro parameters (compile-time variables)
	4.4. Simple Names
	4.5. Formats
	4.5.1. %s
	4.5.2. %d, %u, %x, %X
	4.5.3. %n

	4.6. Composite names
	4.7. Target language interface
	4.8. NumericExpressions
	4.8.1. Terms and operations
	4.8.2. Arithmetic expressions
	4.8.3. Shift expressions
	4.8.4. Bitwise logic expressions
	4.8.5. Logical expressions
	4.8.5.1. Comparisons
	4.8.5.2. Negation ‘!’ 
	4.8.5.3. Logical AND ‘&&’ and OR ‘||’ expressions


	4.9. String Expressions
	4.10. Attributes
	4.11. Built-in Expressions
	4.11.1. Logical built-ins
	4.11.1.1. Defined
	4.11.1.2. Isconst

	4.11.2. Numeric functions
	4.11.2.1. Math functions
	4.11.2.2. Misc. functions

	4.11.3. String expressions
	4.11.3.1. Name-to-string conversion
	4.11.3.2.  Substring extraction 
	4.11.3.3. Concatenation 
	4.11.3.4. Simplified Concatenation
	4.11.3.5. Splitting a string 
	4.11.3.6. Defined encoding


	4.12. Unimal Operators
	4.12.1. Empty operator
	4.12.2. For
	4.12.3. Endfor
	4.12.4. Repeat
	4.12.5. While
	4.12.6. If 
	4.12.7. Else 
	4.12.8. Endif 
	4.12.9. Ifdef
	4.12.10. Set
	4.12.11. Setstr
	4.12.12. Macro
	4.12.13. Endm
	4.12.14. Expand (non-recursive)
	4.12.15. Expand (possibly recursive)
	4.12.16. Include
	4.12.17. Export
	4.12.18. End
	4.12.19. Undef
	4.12.20. Save
	4.12.21. Restore

	4.13. A useful shorthand for a list of arguments
	4.14. Special macro parameters
	4.14.1. uAutoLine
	4.14.2. uAutoLineOut


	5. Error Detection and Recovery
	5.1. Error logging mechanism in Unimal
	5.2. Unimal error messages reference
	5.2.1. Default format of an error message
	5.2.3. F type: Fatal file errors
	5.2.3.1. Error 0102 
	5.2.3.2. Error 0103
	5.2.3.3. Errors 0104, 0105 (output file), 0106 (input file)
	5.2.3.4. Error 0111 

	5.2.4. Special F type error (Usage syntax)
	5.2.5. A type: Out of memory
	5.2.6. S type: Syntax errors
	5.2.6.1. Error 2000 (The file has an unbalanced beginning or end of a block)
	5.2.6.2. Error 2001 (General syntax error)
	Common syntax errors
	Syntax errors in expressions
	Special case: syntax errors in macro expansions

	5.2.6.3. Error 2002 (Macro redefinition)
	5.2.6.4. Error 2004 (Missing actual argument)
	5.2.6.5. Errors 2005, 2006, 2007 (Unmatched block operators)
	5.2.6.6. Error 2009 (Bad macro reference)
	5.2.6.7. Error 2010 (Unexpected type)
	5.2.6.8. Error 2011 (undefined parameter)
	5.2.6.14. Error 2017 (wrong number of arguments to a function)
	5.2.6.15. Error 2018 (literal number too large)
	5.2.6.16. Error 2019 (string not terminated)
	5.2.6.17. Error 2020 (Nested macro definition)
	5.2.6.18. Error 2021 (Unmatched While)
	5.2.6.19. Error 2022 (Recursive macro expansion)

	5.2.7. L type: Lexical errors
	5.2.8. M type: Math errors
	5.2.8.1. Errors 3500, 3501, 3502 (Arithmetic overflows)
	5.2.8.2. Error 3503 (Divide by zero)
	5.2.8.3. Error 3504 (Non-positive divisor in remainder operation
	5.2.8.4. Errors 3510, 3511, 3512, 3513 (math functions errors)

	5.2.9. Internal errors


	6. Additional facts
	6.1. (No) implementation limits
	6.2. Tokenization
	6.3. Including an output file


