Snob: Simple name obfuscator

Inexpensive protection of your source code

Snol

Simple Name Obfuscator

Reference Manual

Version 1.1

MacroExpressions
http://www.macroexpressions.com

© 2004-2010 MacroExpressions http://www.macroexpressions.com

Snob: Simple name obfuscator 1

Table of Contents

0. SNOB: EXECUTIVE SUMMARY ...cueeeeeeeeeeeneeeeeeeeeeeeesss 1
0.1 W H AT IS IT 7 ettt ettt ettt ettt ettt e s a s e s st s s s st s s s st s e s s s s s s e s s s s sasesasasananananannnnns 1
0.1.1 Code in a SCriPt LANGUAZEcc.ooeeueeeeiiiiiiieeii ettt 2
0.1.2 Compiled code: Library deliverablesc.ccocivieiiiiiioeniiiiieit e 2
0.2 WHAT DOES SNOB CONSIST OF7...eutututttuuuuueuteteeeeeessesssssssssssssssssesssssesssssssessssssssssesess..... 2
0.3 WHAT MAKES SNOB DIFFERENT?euttttutttttuttteteteeeeesssesssssssesssssssssssssssssssesssssssssssssssssssss.. 2
0.4 PLAIN-TEXT EULLA . ..ottt eatataaatseetetasasassesssssensssssssnsnsnsnsnsnens 2
1. THE SNOB SOLUTIONcccueeeeeeeeeeeeeeeeeeeessse 3
1.1 LANGUAGE-DEPENDENT CONFIGURATION FILES......cuuuuieeiiiiiiiiiiiieeeeeeeeeeiiaeeeeeeeeevasnnneeeeeeeennanns 3
1.2 EXTENSION-INDEPENDENT CONFIGURATION FILESccciittiiuiiiieeeeeiiiiiieeeeeeeeeseeenneeeeeessssnnnneeees 7
1.2.1 LS EILVEA e SITOD ittt 7
1.2.2 AP T £ I L S e SIIOD et e 8
2. HOW SNOB TOKENIZES TEXT . 8
3. HOW SNOB OBFUSCATES A NAME......cocccivinnreereeeecsssssnsesesessssssssssssssssssssssssassasssess 9
4. HOW TO INVOKE SNOB AND WHAT IT PRODUCKESccoeeeererrrneeereressssssssasessssssssssssane 9
5. HINTS AND TIPS 10
5.1 STANDARD AND THIRD-PARTY NAMES.....uuuuuuuuuuuununnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnsnsnsnnnnnsnnnnnsssnsnsnnnsnnns 10
5.2 COPYING TEXT FILES ..ootttiiiiiiiieeeeeeeee ettt ettt 10
5.3 DEALING WITH MANGLED NAMESccoittiiiiiiiiiieeeeeeeeeeeeeee ettt 11
6. SNOB ERROR REPORTING . 11
7. KINOWN ISSUES ... ieiiiiieiereresesesesess 12
Acknowledgement

Regular expression support is provided by the PCRE library package, which is open source software,

written by Philip Hazel, and copyright the University of Cambridge, England. See
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/

0. Snob: Executive Summary
0.1 What is it?

Snob is a simple (or stupid, if you like it better) name obfuscator tool. It replaces meaningful names
(identifiers) in your source code with meaningless and similarly looking ones. This makes the code very
hard to read for a human being (but not a computer). As a usual practice, name obfuscators are used
when the source code containing proprietary knowledge needs to be distributed.

When a reader encounters your obfuscated code, at the very least he understands that you wanted to

protect it and that it is not really for human eyes. If he still wants to figure out how the code works, the
task is much harder if the names are meaningless.

© 2004-2010 MacroExpressions http://www.macroexpressions.com

Snob: Simple name obfuscator 2

Here are a few cases where you may favor name obfuscation:

0.1.1 Code in a script language

If your deliverable is, say, in JavaScript, everyone can see client-side code by looking at the source of
the Web page. Even with the server-side scripts, you do not necessarily want your customer to
understand the inner workings of the code.

Sometimes, a piece of your project is just handy to write in Perl or a shell script language. When the
delivery time comes, you may regret that you need to expose your code. (Granted, those things are
cryptic enough in themselves but there are quite a few fluent speakers of those languages.)

Same goes for Python, Basic, and pretty much any interpreted language.

0.1.2 Compiled code: Library deliverables

In a way, the only case where none of your names are exposed is a standalone executable (OK, maybe
with calls to standard or third-party shared libraries/DLLs.

If your deliverable contains a library, the latter is going to have some of the original code’s names in its
relocation table. And, of course, your shared library (or DLL, as the case may be) exposes names of
exported interfaces.

If you deliver a static (linkable) library, it has names internal to the library in relocation table(s).

0.2 What does Snob consist of?

Snob is a standalone executable which doesn’t require any installation or uninstallation. It does rely on
project configuration files as described in further sections.

0.3 What makes Snob different?

Yes, there are name obfuscators out there. So, why another one?

The answer is, the known name obfuscators are too expensive and too inflexible. For example, they do
not handle projects written in multiple programming languages, or they do not obfuscate the elements
of aggregate data types (like C’s struct).

Snob puts you in control: you tell Snob what the definition of a name is, and Snob does the rest. Much
of Snob configuration is specific to the programming language(s) of your project; Snob is distributed
with a somewhat simplistic sample configuration file for C. Any donated language support
configurations will be posted on MacroExpressions website for free sharing among Snob users.

0.4 Plain-text EULA
Here is the Snob End-User License Agreement in plain English:

You (whether you are a physical person or any kind of organization) get a non-exclusive license to use
Snob at your own risk for the sole purpose of obfuscating any files whatsoever. However, you may not

© 2004-2010 MacroExpressions http://www.macroexpressions.com

Snob: Simple name obfuscator 3

distribute the obfuscated files in source, compiled or any other form as part of your product, unless you
purchase a distribution license.

The distribution license is dirt cheap and allows you to distribute the files you obfuscated in any form,
but it limits the files you can obfuscate to those which you have legal rights to do so. Legal
arrangements on that do vary, and you are responsible to find out whether you are violating any.

You further agree to hold MacroExpressions harmless regardless of any malady whatsoever the use of
Snob caused you, including but not limited to a spoiled day, computer crash or lost business.

You cannot use Snob in jurisdictions where provisions of this license agreement are in contradiction
with any law.

Enjoy!

1. The Snob Solution

Snob presumes that your project has its root directory, and that every file and subdirectory (recursively)
belongs to the project — and that nothing outside this directory hierarchy belongs to the project.

Part of your project is Snob configuration files. They all have the extension .snob.

1.1 Language-dependent configuration files

NOTE. This section assumes that you are familiar with regular expressions, and, in particular, with its
Perl variety. An independent reference of regular expressions used in Snob is available in the
distribution and online. It is an adaptation of the PCRE regular expressions reference.

Snob relies on association of a filename extension with a corresponding configuration file name
(presuming that the filename extension corresponds to a language, such as .java for a Java source file).

If somewhere in the project directory hierarchy there is a file with extension . ext, Snob looks for a
configuration file named dotext. snob (such as dotc. snob for . c files or dotfoo. snob for

. foo files). So named configuration file is searched from the directory where the .ext file was found all
the way up to the project’s root directory. If dotext. snob was not found, Snob looks, as a last resort,
in the directory where the Snob executable, snob.exe, was started from. The first found configuration
takes effect. If the configuration file dotext. snob was not found, Snob skips the processing of the
.ext file it started with.

To put it in other words, extension-dependent configuration files have a fixed name dotext . snob for
the filename extension . ext and affect .ext files in the project directory and its subdirectories until
overridden with another dotext . snob file in some subdirectory, which acts on directories down the
hierarchy until overridden, etc.

dotext.snob files are plain text files containing configuration options and optional comments. A

comment is any line that is not recognized as a configuration option. For future compatibility, it is
advisable to start a comment line with a blank space.

© 2004-2010 MacroExpressions http://www.macroexpressions.com

Snob: Simple name obfuscator 4

The following configuration options are recognized:
name=<regular expression>

This option defines what a name is outside literal strings and comments. Here is an example from a
dotc.snob file:

name=\b[A-Za-z][0-9A-Za-z]*

which says that a name is a sequence of letters, underscores and digits starting with a non-digit and on a
word boundary. Note that, strictly speaking, this definition is correct for C but incorrect for Snob. The
reason is that Snob is unaware of C line continuation syntax (a backslash followed by a newline). Those
who break lines in the middle of a token (before they are excommunicated from programming) should
take this into account.

Since line continuation complicates the regular expression and slows down its processing, we will
ignore it in all C tokens except single-line comments (from // to the end of line, which are recognized
by most compilers) where this omission may have a devastating effect. All other broken tokens will
result in compilation errors of the obfuscated code.

For comparison, here is a definition of a Perl name (which would go to a dotpl. snob file):

name= (?<=[$%Q]) [A-Za-z] [0-9A-Za-z]*

i.e., a sequence of letters, underscores and digits, starting with a letter and following one of $, % or @.
As you can see, in Perl’s array @foo, only foo is considered a name. The reason is that $foo [$Sbar]
refers to the same entity (foo) so the name must be identical in both instances.

There may be more than one definition of a name; extra definitions are considered as alternatives.

keyword=<regular expression>

This option specifies language tokens (typically, keywords) which Snob would otherwise confuse with
a name. Here is a sample line from dotc. snob:

keyword=auto|break|c(aselhar|on(st|tinue)) |d(efault|o]|ouble)

Again, there can be more than one ke yword= option; different options considered as alternatives.
For comparison, Perl’s dotpl . snob does not need keyword= option because Snob cannot confuse
Perl name (as defined above) with a Perl keyword. For the same reason, C’s token —> doesn’t have to

be listed as a keyword.

Note however that ke yword= option may specify text covering more than one token of the language.
For purely aesthetic reasons, in such cases a synonym option ignore= is recommended.

ignore=<regular expression>

© 2004-2010 MacroExpressions http://www.macroexpressions.com

Snob: Simple name obfuscator 5

This option is similar to the ke yword= option in that it defines a piece of text that Snob must preserve.
In fact, its action is identical to that of the ke yword= option and it can be used to define pieces of text
covering more than one token.

Here is an example from a dotc . snob which ignores angle-bracket include statements:

Ignore <>-includes
ignore=(?m) [\t]*\#[\t]*include[\t]*<.*?>

reserved=<regular expression>

This option is similar to the keyword= or ignore= option in that it defines what Snob will ignore.
The difference is that the option acts on the whole project rather than on subdirectory hierarchy starting
with where the option is found.

Here is how it works:

Assume for example that there is a dot foo . snob file in a subdirectory foo dir of the project
directory, and that there is a line reserved=blah in that file. Assume further that there is a file with
the extension . foo, say, bar . foo, for which our dot foo. snob is the configuration file (that is,
bar.fooisin foo dir directory or itis down foo dir directory tree and the first dot foo. snob
found going up from bar. foo’s directory is in foo dir.) In this case, this dotfoo. snob
configuration file takes effect and, in particular, its line reserved=blah takes effect. The meaning of
it is that Snob will not take b1ah as a name in any file with any extension in any directory of the
project directory hierarchy.

However, if there is no . foo file for which our dotfoo. snob is a configuration file, then no option
in this dot foo . snob has an effect and, in particular, the option reserved=blah is not seen.

If this looks rather complicated it, well, is. The reserved= option is somewhat advanced and its
intent is to indicate what words are not names when a language is brought into the project.

Example from a dotc. snob:
reserved=to (upper|lower) |ato(£f]i|1)

Consider, for instance, an Assembler language project, where atoi doesn’t mean anything special and,
when encountered, can be considered a name. Now you might introduce C language modules into the
project, and there atoi is a name of a standard library function. The deal is, however, that an
Assembler module can now call this very atoi function. Thus, atoi must be a reserved word for both
C and Assembler, but only if there are C modules in the project.

Now, consider introduction of C++ modules in this mixed Assembler and C project. In this scenario the
word new is C++ language keyword and a valid name in both Assembler and C. Should then new be
covered by keyword= option or by reserved= option? Let’s consider our options (no pun intended)
here.

If we have a line reserved=new in an active dotcpp . snob configuration file, then the net effect
of it is that the name new will not be obfuscated in Assembler and C modules. No harm done, except
that the name is revealed. If, instead, we have a line keyword=new in dotcpp. snob, then new will

© 2004-2010 MacroExpressions http://www.macroexpressions.com

Snob: Simple name obfuscator 6

be treated as a name in Assembler and C and as a non-name in C++. Whether we can do that depends,
of course, on whether Assembler or C modules can use the same C++’s new. In this case, the answer is
negative, so new should be in a keyword= option of a dotcpp . snob file. This issue deserves a
closer examination because of header (.h) files shared between C and C++ modules. We’ll cover this
issue again when describing include= option.

comment=<regular expression>

This option specifies the areas of text which Snob will throw out entirely from the source file. Here is
an example from a dotcpp. snob file:

Single-line comment with continuation lines
comment=(?ms) //.*2 (?2<!\\)$

Multi-line comment
comment=(2s) (/*.*2*/)

As you can see, multiple comment= options can be used and are considered alternatives. To demystify
the regular expressions there:

Single-line comment definition says that a comment is any text from double slash to the first occurrence
of a newline not preceded by a backslash character.

Multi-line comment definition says a comment is any text enclosed between “/*” and the closest to it
sc*/”.

string=<regular expression>

This option defines text that Snob has to copy verbatim to the output (obfuscated) file. Its typical use is
to preserve the literal strings. Here is an example from a dotc. snob:

String goes from one unescaped quote to the next

string= (2<!\\)\".*2 (?2<!\\)\"

A character is a string for our purposes (with single quotes)
string= (2<!\\)\'.*?2 (2<!\\)\"

string=<regular expression> name=<regular expression>
Some languages, such as, e.g., shell script languages or Perl, recognize names within a literal string;
typically, a name must be preceded by an unescaped dollar sign ($). This option allows to define a

string along with instructions to Snob on how to spot names in it.

Here is an example from a hypothetical dotsh. snob where a double-quoted string may contain
uppercase names preceded by a dollar sign:

String goes from one unescaped gquote to the next
Name within string must be preceded by an unescaped $.

string=(2<!\\)\".*?2 (?<!\\)\" name=(2<=(?2<!\\)\$) [A-Z] [A-Z0-9]

Note that there must be a single space character between the end of definition of a string and the n of
the name= option.

© 2004-2010 MacroExpressions http://www.macroexpressions.com

Snob: Simple name obfuscator 7

include=<pathname >

This option instructs Snob to read configuration options from the specified file(s). For instance, in a C
project, configuration file doth . snob for the .h (header) files might contain a single line:

include=dotc.snob
This will make .h files inherit configuration options of .c files.
Here is how Snob searches for the file to include.

If the pathname is a relative pathname (i.e., doesn’t contain drive letter or share host name and doesn’t
start with a forward or back slash), then it is considered relative to the directory where the configuration
file containing the include= option is located. E.g., if a dot foo . snob is located in the Foo
directory somewhere in the project directory tree and contains the line
include=..\..\MyConfigFile

then Snob looks for MyConfigF1ile in the parent directory of the parent directory of the Foo
directory.

Snob doesn’t check that such a directory is under the project directory hierarchy.

If the pathname is not a relative pathname, Snob considers it a complete file specification. For instance,
the line

include=E:MyConfigFile

instructs Snob to read configuration from the file MyConfigFile located in the current working
directory of the drive E : whatever that directory might be. That is so even if the project directory is on
the drive E: as well.

In either case, if Snob fails to open the specified file, it issues an error.
use=<pathname >

This option is almost identical to the include= option. The only difference is that the pathname must
be a relative pathname and it is considered relative to the directory where snob.exe was located. For
instance, if snob.exe is located in C : \ Snob then the line

use=conf\MyConfigFile

instructs Snob to get configuration options from the file C: \Snob\conf\MyConfigFile.

1.2 Extension-independent configuration files

Snob supports additional configuration files with fixed names reserved. snob and
APIfiles.snob. They are described below.

1.2.1 reserved.snob

If a file named reserved. snob exists anywhere in the project directory hierarchy, each non-empty
line of it is considered to be a name for Snob to preserve in any of the project’s files. It is very similar to
reserved= option in the extension-specific configuration files but it acts independently of whether any
specific file extension is actually used in the project. It is also much faster for Snob to process.

© 2004-2010 MacroExpressions http://www.macroexpressions.com

Snob: Simple name obfuscator 8

There can be several reserved. snob files in various project subdirectories; they act cumulatively.

1.2.2 APIfiles.snob

If a file named APIfiles. snob exists anywhere in the project directory hierarchy, each non-empty
line of it is considered to be a pathname of a file that Snob must treat in a special way.

As the name implies, APTfiles. snob is intended to contain the names of files exposing API
(Application Programmer’s Interface) to your customer. An API file therefore must not be obfuscated at
all and all its comments must be preserved. In other words, an API file must be copied to the
obfuscation location verbatim. For this to work correctly, Snob must figure out what names are there in
this API file and remember those names as not subject to obfuscation.

Pathname specification can contain wildcards (* and ?) in the filename part of it, which will cause all
matching files to be considered API files. However, Snob will nof report an error if it finds no matches
to the wildcard specification.

Snob slightly stretches this notion of API files in the following way:

If the pathname is a bare filename, without any path information, then it is considered to be an API file
in the directory where the APIfiles. snob is located. It will be copied verbatim and the names found
in it will be treated as not subject to obfuscation.

If there is any directory (or drive) information in the pathname, then the names found in it will still be
learned as not subject to obfuscation, but the file itself is not remembered in any special way. If the
pathname points outside the project directory hierarchy, that’s exactly the desired effect. If, however,
the pathname points inside the project, Snob will process the file normally. That is, if the file’s
extension is unknown to Snob, it (the file) will be skipped. Otherwise, Snob will attempt to obfuscate it,
but since the file will have all its names not subject to obfuscation, the net effect will be that the file will
be stripped of its comments.

2. How Snob tokenizes text

For Snob, the text in a source file consists of tokens as specified in the configuration file:
e keyword

ignore

string (perhaps, with names)

comment

reserved (name)

name

and the rest of the text.

Snob starts from the beginning of the source file as the current position and finds the match with the
least offset from the current position. If there is more than one match, the type of match higher in the
list above is selected. E.g., if a piece of text matches definitions of a keyword and a name, it is
considered a keyword. Similarly, if a text matches an ignore and a comment, it is considered an
ignore.

The latter has a curious application for UNIX shell scripts, where the “#!” comment specifies the shell

interpreter for the script. The problem is that since Snob removes comments, it leaves the script without
an indication of what interpreter should run it. A solution is to declare a “#!” comment in ignore=

© 2004-2010 MacroExpressions http://www.macroexpressions.com

Snob: Simple name obfuscator 9

option. Then Snob will match a “#!” comment as an ignore and as a comment. Since ignore is
higher on the priority list above, a “#!”” comment will be ignored by Snob and thus left intact. (A
simpler and faster solution is of course to define comments, for Snob purposes, as not starting with a

10

When the winning match is selected, the segment of the source file between the current position and the
beginning of the match is copied to the output file.

Then, the winning match is processed as follows:

If it is a comment, it is skipped and not copied to the output file (unless the file is remembered as API).
If it is a name and it if it can be obfuscated, the obfuscated name is copied to the output file

If it is a string, it is copied to the output file while replacing obfuscatable names in it (if any)

In all other cases, the matched text is copied to the output file.

Finally, the current position is moved to the end of the winning match and the process repeats until the
end of the file is reached.

3. How Snob obfuscates a name

When Snob encounters a name in any project file with known configuration, it assigns to this name a
unique number — essentially, a counter of different names. When Snob replaces the name, the
replacement is a fixed prefix, followed by a fixed-width hexadecimal representation of the number
assigned to the name, followed by a fixed suffix.

By default, the prefix is “C”, the width is 8 and the suffix is empty, and in the beta version this cannot
be changed.

Example: if the name myname was assigned the number 17, it will be replaced by C0000011 (11 is a
hex 17).

4. How to invoke Snob and what it produces

Snob is invoked from the command line with two arguments: the project directory name and the target
directory name, with an optional third argument -—preserve-1ines. The target directory must not
exist. If the third argument is supplied, multi-line comments will be not just removed but replaced with
the appropriate number of empty lines, so that obfuscation would preserve line numbering.

Examples:
snob myprojects\projectl C:\obuscate\projectlobf
snob . ..\..\obf --preserve-lines

Snob creates the target directory and reproduces there the directory subtree of the project directory.
Then it copies the files it knows about from the project directory subtree to the corresponding location
in the target directory. Files with unknown extension (like .snob configuration files or object files) are
not copied. While copying, Snob replaces names with their obfuscated versions and removes comments
as instructed by . snob configuration files throughout the project directory subtree.

Finally, snob writes the file projmap . snob to the target directory. projmap. snob is a text file
each line of which comprises a pair of obfuscated name and its original name, the two separated by
“:” like

c000000C9 : SNOBEVENT OBFUSCATE FINISH

© 2004-2010 MacroExpressions http://www.macroexpressions.com

Snob: Simple name obfuscator 10

In addition, Snob prints a fair amount of information to the standard output: directories it visits, files it
processes, skips or copies etc. This output can be redirected to a file for later analysis.

5. Hints and tips

5.1 Standard and third-party names

Snob is too ignorant to understand issues like namespaces. If it sees a name which is not reserved, not a
keyword and not seen in API files, Snob will replace this name with another name it invents. This
simplicity is intended. The problem is in using names from a standard or third-party library. For
instance, if you call the standard C function time (), you need to let Snob know that the name time is
to be preserved. A side effect is that if you have a struct with an element called t ime, then Snob will
preserve it as well. If you don’t want this to happen, you need to follow a careful naming convention
such that a name appears in one namespace only.

So, you decided to use the function time (), and you want to tell Snob that the name is not to be
obfuscated. There are three ways to do so:
- declare it in a keyword= or reserved= or 1gnore= statement in the language-dependent
configuration file dotc. snob;
- listtimeinareserved.snob;
- declare the header t ime . h an API file

The first option is slower than the second one; it should be used only if you want to obfuscate the name
time in languages other than C (for this example). The third option guards not only t ime but also all
names seen in time . h, and, like the second option, for all files regardless of extension. It can be taken
to an extreme by including all standard headers by writing a line to APTfiles. snob such as these:
C:\Program Files\Microsoft Visual Studio .NET 2003\Vc7\include*
C:\Program Files\Microsoft Visual Studio .NET 2003\Vc7\include\sys\~*

This is a way to protect all standard names at once; Snob may take some time to comprehend all
headers, but it is not necessarily a problem since you don’t run Snob very often. The true problem is
that you seldom would use all standard headers in your code, so you may inadvertently use names that
are in use in standard headers, and those names will not be obfuscated, resulting in degraded quality of
obfuscation.

Thus, which solution you want to accept depends on how many standard names you use in the project.
If just a few, like in an embedded environment, reserved. snob may be just the right choice: you
list the names known to be used and that’s it. If, on the other hand, you do, say, Windows programming,
you hardly know in advance which structures, classes and functions you will end up using. In this case,
listing Windows headers as API files may be a better idea.

Some languages like C and C++ let you know where the standard (or third-party) names are: they are in
the common headers. That’s why you can list those headers in the APIfiles. snob file and not to
worry about obfuscating a standard name.

If your programming language does not provide such a facility, you are limited to the first two options
of the previous section.

5.2 Copying text files

If you need to have text files in your project directory subtree copied to the target directory subtree
(such as makefiles, IDE project definition text files), you can simply list them in APIfiles. snob.

© 2004-2010 MacroExpressions http://www.macroexpressions.com

Snob: Simple name obfuscator 11

5.3 Dealing with mangled names

A language compiler may mangle names seen in the source code. This is not a problem by itself, but to
access a language construct from a different language requires some labor and knowledge of how
exactly the original name is mangled, the latter often being compiler-specific.

As a simple example, consider a C compiler that adds an underscore (_) in front of each name and a
mixed C and Assembler project. If a construct seen by C and Assembler has a name in C, say,
theName, then its Assembler name is _theName. The name definition for the Assembler files should
then be something like “a word preceded by an underscore or a word not starting with an underscore.”
This would ensure that the names naming the same construct in C and Assembler are still compatible.
For instance, if theName obfuscates to C01234567, then C files will use C01234567, and
Assembler files willuse C01234567. Not that it is readable, but something about the name is still
revealed: namely, that it’s a name visible from C. You should be aware of this.

If a C compiler mangles names mostly just for kicks, a C++ compiler mangles names for a purpose. The
purpose is of course fo reveal type information (such as the number and the types of a function’s
arguments) to the linker — and to a curious hacker. The C++ source code name obfuscation does not
mitigate the exposure of type information in the C++ names. For a good reverse engineer, this
information tells as much as an accurately chosen name of a construct. Short of tinkering with object
files, there is nothing that can be done about it.

Probably, very few people would want to access C++ constructs from outside C++ realm. So
constructing C++-aware name definitions for, say, C may not have any practical importance. In general
though, mangling names in one language affects name definitions in another language if the languages
access the same constructs. The C/Assembler example earlier demonstrates a way of dealing with this.

6. Snob error reporting
In case Snob encounters an error, it doesn’t try to recover since the result would be meaningless

anyway.
Snob may report the error in a hierarchical way, starting from top and drilling down to a greater detail,

e.g.,

Regular expression error in : .c

Regular expression error in : ../snobtest\dotc.snob
Regular expression error in : missing) line 16 column 23

The hierarchical error reporting is especially useful when dealing with included files.

Snob recognizes the following error categories:
e Internal error

Out of memory

Error reading file

Cannot create target directory

Bad configuration file

Error writing file

Regular expression error

Bad search filespec

© 2004-2010 MacroExpressions http://www.macroexpressions.com

Snob: Simple name obfuscator 12

e Include/use nestedness limit exceeded

Upon exit, Snob returns 0 on success or non-zero if an error was encountered.
Snob run is successful if the last two lines sent to the standard output are
End processing the project
Finished

7. Known issues

If a regular expression you specified is very complicated to match, Snob may quietly die of stack
overflow. It is fairly easy to fix this behavior for the price of slower execution but it’s not worth it
because the problem regular expression is certainly not what you intended it to be.

The obfuscated project in the target directory may no longer build. Short of Snob failure (which you are
asked to report to snob@macroexpressions.com), there are three potential sources of the problem, two
of which are your fault and the third may be yours or of the toolchain you are using. Here they are:

e You provided a . snob extension-dependent configuration file for a binary type. Snob almost
certainly will cripple a binary file to an unusable state. If this was an object file, you will get a
complaint from the linker. If it is a voodoo of an Integrated Development Environment (IDE),
you won’t be able to even open your project. Please, do not provide dotobj . snob and the
like configuration files!

e The configuration you provided is incorrect. Please, make sure that all your regular expressions
do what you want them to do. Debug them on a tiny toy project where their correctness can be
established by inspection. An additional issue arises when using standard or third-party header
files (i.e., those which do not become a part of your project). Please, see the Hints ant Tips
section for a relevant discussion.

o The build tool uses absolute path information (as opposed to relative to project directory). This
is unfortunate: since the obfuscated project ends up in a different directory, it won’t build
indeed. To mitigate this problem, you have a few options: If you use your own makefiles to
build the project, fix them to use project-relative path information. If you use an IDE, check if
you can configure it to use relative paths. If you cannot, you may (in Windows environment)
invent a drive, say, R: using the append command; configure the IDE to use the R: drive for
the project and then switch the directory mapped to R: from the original directory to the
obfuscated directory and back as needed. No, it’s not elegant but if you create small batch files
to do this, it’s tolerable.

© 2004-2010 MacroExpressions http://www.macroexpressions.com

