Snob: Simple name obfuscator — regular expressions mefere

Inexpensive protection of your source code

Snob

Simple Name Obfuscator

Regular Expressions Reference

Version 1.0

Regular expression support is provided by the PQiR&ry package, which is open source software,

written by Philip Hazel, and copyright the Univéysof Cambridge, England. See
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pc re/

MacroExpressions
http://www.macroexpressions.com

Adaptation © 2004 MacroExpressioiits://www.macroexpressions.com

Snob: Simple name obfuscator — regular expressions mefere 1

Table of Contents

0. SNOB REGULAR EXPRESSIONS.......oo it 1
1. PCRE REGULAR EXPRESSION DETAILS. .. .o 2
2. BACKSLASH. ...ttt e e e e e e e e 3
3. CIRCUMFLEX AND DOLLAR ...ttt 6
4, FULL STOP (PERIOD, DOT)...eieitiitisieeeeiresreseseesne s s sre s eesresnesseesnesnessessnessessessesnsessesnens 6
5. MATCHING A SINGLE BY TE .. .ottt 6
6. SQUARE BRACKETS .. .ot e e e sre e e e nnnennne s 7
7. VERTICAL BAR ..ottt st e e e s e me e saeesneesnnesreennnennnennnens 8
8. MATCH OPTIONS SETTINGottt 8
0. SUBPATTERNS ...ttt e e e e e n e e n e e reenns 9
10. NAMED SUBPATTERNS. ...t nre e e 10
11 REPETITION ..ottt st e e s e s re e sre e s re e s reenreenreenreesneenreenree e 10
12. ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS.......ccoi e 12
13. BACK REFERENCES ...ttt re e e 13
14. ASSERTIONS. ... ettt et r e r e e n e e r e e r e e reenreenreenreenree e 14
15. CONDITIONAL SUBPATTERNS. ... e 17
16. COMMENT S ..ttt e s e e ere e s e e saeesmeesaeesreesreesnnesnnesnnennnennnea 18
17. RECURSIVE PATTERNS ... s 18
18. SUBPATTERNSAS SUBROUTINES.......ooii i 19

0. Snob Regular Expressions
Snob uses regular expressions in its configurdties specific to programming languages.

Regular expression support is provided by the PQiR&ry package, which is open source software,
written by Philip Hazel, and copyright the Univéysdf Cambridge, England. See
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pc re/

With the understanding that “plagiarism is the enest form of flattery,” this reference is an
adaptation of the PCRE regular expressions referencover regular expressions to the extent
they are used in Snob configuration files. Whemsoeable, the text of the original reference
has been preserved verbatim; however, referenqga®gwammer’s interfaces have been

Adaptation © 2004 MacroExpressioiits://www.macroexpressions.com

Snob: Simple name obfuscator — regular expressions mefere 2

removed or reformulated in terms of regular expogssthemselves since the interfaces are not
visible to a Snob user.

1. PCRE Regular Expression Details

The syntax and semantics of the regular expressigmgorted by Snob configuration files are
described below. Regular expressions are alsoideddn the Perl documentation and in a
number of other books, some of which have copicasples. Jeffrey Friedl's "Mastering
Regular Expressions”, published by O'Reilly, cotbesn in great detail. The description here
is intended as reference documentation.

A regular expression is a pattern that is matclyadnat a subject string from left to right. Most
characters stand for themselves in a pattern, atdmthe corresponding characters in the
subject. As a trivial example, the pattern

The quick brown fox

matches a portion of a subject string that is igahto itself. The power of regular expressions
comes from the ability to include alternatives agetitions in the pattern. These are encoded
in the pattern by the use wEta-characters, which do not stand for themselves but instead are
interpreted in some special way.

There are two different sets of meta-characteosdlthat are recognized anywhere in the
pattern except within square brackets, and thceteate recognized in square brackets. Outside
square brackets, the meta-characters are as follows

\ general escape character with several uses

AN assert start of string (or line, in multil ine mode)

$ assert end of string (or line, in multilin e mode)
match any character except newline (by def ault)

start character class definition
start of alternative branch
start subpattern
end subpattern
extends the meaning of (
also 0 or 1 quantifier
also quantifier minimizer
* 0 or more quantifier
+ 1 or more quantifier

also "possessive quantifier”
{ start min/max quantifier

W= ~— -

Part of a pattern that is in square brackets Isa@ "character class". In a character class the
only meta-characters are:

\ general escape character

N negate the class, but only if the first ch aracter

- indicates character range

[POSIX character class (only if followed by POSIX
syntax)

] terminates the character class

Adaptation © 2004 MacroExpressioiits://www.macroexpressions.com

Snob: Simple name obfuscator — regular expressions mefere 3

The following sections describe the use of eadih@ineta-characters.

2. Backslash

The backslash character has several uses. Fifstlig followed by a non-alphanumeric
character, it takes away any special meaning traiacter may have. This use of backslash as
an escape character applies both inside and outisatacter classes.

For example, if you want to match a * charactey wwite * in the pattern. This escaping
action applies whether or not the following chagaetould otherwise be interpreted as a meta-
character, so it is always safe to precede a r@malimeric with backslash to specify that it
stands for itself. In particular, if you want to ttia a backslash, you write \\.

If you want to remove the special meaning from@us@ce of characters, you can do so by
putting them between \Q and \E. This is differeatrf Perl in that $ and @ are handled as
literals in \Q...\E sequences in PCRE, wherea®ih B and @ cause variable interpolation.
Note the following examples:

Pattern PCRE matches Perl matches
\Qabc$xyz\E abc$xyz abc followed by the
contents of $ Xyz

\Qabc\$xyz\E abc\$xyz abc\$xyz
\Qabc\E\$\Qxyz\E abc$xyz abc$xyz

The \Q...\E sequence is recognized both insideoatglde character classes.

A second use of backslash provides a way of engathmn-printing characters in patterns in a
visible manner. There is no restriction on the apaece of non-printing characters, apart from
the binary zero that terminates a pattern, but véhpattern is being prepared by text editing, it
is usually easier to use one of the following escsgquences than the binary character it
represents:

\a alarm, that is, the BEL character (hex 07)

\cx "control-x", where x is any character

\e escape (hex 1B)

\f formfeed (hex 0C)

\n newline (hex 0A)

\r carriage return (hex 0D)

\t tab (hex 09)

\ddd character with octal code ddd, or backr eference
\xhh character with hex code hh

The precise effect of \cx is as follows: if x i¢oaver case letter, it is converted to upper case.
Then bit 6 of the character (hex 40) is inverteaug \cz becomes hex 1A, but \c{ becomes hex
3B, while \c; becomes hex 7B.

After \x, from zero to two hexadecimal digits aead (letters can be in upper or lower case). If
characters other than hexadecimal digits appeardeet \x{ and }, or if there is no terminating
}, this form of escape is not recognized. Instebd,initial \x will be interpreted as a basic
hexadecimal escape, with no following digits, giva byte whose value is zero.

Adaptation © 2004 MacroExpressioiits://www.macroexpressions.com

Snob: Simple name obfuscator — regular expressions mefere 4

After \O up to two further octal digits are read.doth cases, if there are fewer than two digits,
just those that are present are used. Thus thesegl0\x\07 specifies two binary zeros
followed by a BEL character (code value 7). Makeeswou supply two digits after the initial
zero if the character that follows is itself anatigit.

The handling of a backslash followed by a digiteotthan 0 is complicated. Outside a
character class, PCRE reads it and any followiggsas a decimal number. If the number is
less than 10, or if there have been at least thatymprevious capturing left parentheses in the
expression, the entire sequence is takenbaslareference. A description of how this works is
given later, following the discussion of parenthesdi subpatterns.

Inside a character class, or if the decimal nunbgreater than 9 and there have not been that
many capturing subpatterns, PCRE re-reads upée thetal digits following the backslash,

and generates a single byte from the least sigmifi8 bits of the value. Any subsequent digits
stand for themselves. For example:

\040 is another way of writing a space

\40 is the same, provided there are fewer than 40
previous capturing subpatterns

\7 is always a back reference

\11 might be a back reference, or another way of
writing a tab

\011 is always a tab

\0113 is a tab followed by the character "3"

\113 might be a back reference, otherwise the
character with octal code 113

\377 might be a back reference, otherwise
the byte consisting entirely of 1 bits

\81 is either a back reference, or a binary ze ro
followed by the two characters "8" and "1

Note that octal values of 100 or greater must rahtroduced by a leading zero, because no
more than three octal digits are ever read.

All the sequences that define a single byte vahrebe used both inside and outside character
classes. In addition, inside a character classsébjgence \b is interpreted as the backspace
character (hex 08). Outside a character classialdifferent meaning (see below).

The third use of backslash is for specifying gemeharacter types:

\d any decimal digit

\D any character that is not a decimal digit

\s any whitespace character

\S any character that is not a whitespace cha racter
\w any "word" character

\W any "non-word" character

Each pair of escape sequences partitions the ctargaeof characters into two disjoint sets.
Any given character matches one, and only oneadt eair.

Adaptation © 2004 MacroExpressioiits://www.macroexpressions.com

Snob: Simple name obfuscator — regular expressions mefere 5

For compatibility with Perl, \s does not match YAE character (code 11). This makes it
different from the POSIX "space” class. The \s abtars are HT (9), LF (10), FF (12), CR
(13), and space (32).

A "word" character is any letter or digit or thedemscore character, that is, any character
which can be part of a Perl "word". The definitoinetters and digits correspond to default C
locale, as one would expect dealing with prograngntemguages.

These character type sequences can appear baté argd outside character classes. They each
match one character of the appropriate type. Ittheent matching point is at the end of the
subject string, all of them fail, since there isam@aracter to match.

The fourth use of backslash is for certain simgkeegtions. An assertion specifies a condition
that has to be met at a particular point in a matdtiout consuming any characters from the

subject string. The use of subpatterns for morepdiocated assertions is described below. The
backslashed assertions are

\b matches at a word boundary
\B matches when not at a word boundary
\A matches at start of subject

\Z matches at end of subject or before newlin e atend
\z matches at end of subject
\G matches at first matching position in subj ect

These assertions may not appear in character slf@asenote that \b has a different meaning,
namely the backspace character, inside a chardate).

A word boundary is a position in the subject stnvigere the current character and the previous
character do not both match \w or \W (i.e. one megdw and the other matches \W), or the
start or end of the string if the first or last c@ter matches \w, respectively.

The \A, \Z, and \z assertions differ from the ttaatial circumflex and dollar (described below)
in that they only ever match at the very start end of the subject file’s text, whatever options
are set. Thus, they are independent of multilineleno

The difference between \Z and \z is that \Z matdiefsre a newline that is the last character of
the string as well as at the end of the string,red&® \z matches only at the end.

The \G assertion is true only when the current matcposition is at the start point of the
match, which is the beginning of the file’s texithe end of the previous match accepted by
Snob. It differs from \A after the first match imetfile’s text. By matching patterns multiple
times, you can mimic Perl's /g option, and it ishis kind of implementation where \G can be
useful.

Note, however, that PCRE'’s interpretation of \Gthesstart of the current match, is subtly
different from Perl's, which defines it as the efdhe previous match. In Perl, these can be
different when the previously matched string wagpgmBecause PCRE (and Snob) does just
one match at a time, it cannot reproduce this biehav

Adaptation © 2004 MacroExpressioiits://www.macroexpressions.com

Snob: Simple name obfuscator — regular expressions mefere 6

3. Circumflex and Dollar

Outside a character class, the circumflex chargtjas an assertion which is true only if the
current matching point is at the start of a ling.d&fault, the start of a line is the start of the
subject text. This can be overridden by (?m) optitich makes what follows any newline
character also a start of a line. (Inside a charagtass, circumflex has an entirely different
meaning — see below).

Circumflex need not be the first character of thdgrn if a number of alternatives are
involved, but it should be the first thing in eadternative in which it appears if the pattern is
ever to match that branch. If all possible altaweat start with a circumflex, that is, if the
pattern is constrained to match only at the statie@subject, it is said to be an "anchored"
pattern. (There are also other constructs thataase a pattern to be anchored.)

A dollar character is an assertion which is truly dfrthe current matching point is at the end
of the subject string, or immediately before a neatharacter that is the last character in the
string (by default). Dollar need not be the lasirelcter of the pattern if a number of
alternatives are involved, but it should be thé itesn in any branch in which it appears. Dollar
has no special meaning in a character class.

The meanings of the circumflex and dollar characéee changed if the (?m) option is in
effect. When this is the case, they match immeljiatier and immediately before an internal
newline character, respectively, in addition tochatg at the start and end of the subject
string. For example, the pattern ~abc$ matchesubgct string "def\nabc" in multiline mode,
but not otherwise.

Note that the sequences \A, \Z, and \z can be tasettch the start and end of the subject in
both modes, and if all branches of a pattern stigint\A it is always anchored, whether (?m) is
in effect or not.

4. Full Stop (Period, Dot)

Outside a character class, a dot in the patternheatany one character in the subject,
including a non-printing character, but not (byaddf) newline. If the (?s) option is in effect,
dots match newlines as wellhe handling of dot isentirely independent of the handling of
circumflex and dollar, the only relationship being that they both inwhewline characters.
Dot has no special meaning in a character class.

5. Matching A Single Byte

Outside a character class, the escape sequencatt@an any one byte. Unlike a dot, it always
matches a newline. It is best avoided.

PCRE (and thus Snob) does not allow \C to appdaokbehind assertions (see below).

Adaptation © 2004 MacroExpressioiits://www.macroexpressions.com

Snob: Simple name obfuscator — regular expressions mefere 7

6. Square Brackets

An opening square bracket introduces a charadsscterminated by a closing square bracket.
A closing square bracket on its own is not spetiia.closing square bracket is required as a
member of the class, it should be the first dataatter in the class (after an initial circumflex,
if present) or escaped with a backslash.

A character class matches a single character isubgect. A matched character must be in the
set of characters defined by the class, unlesBrdteharacter in the class definition is a
circumflex, in which case the subject charactertmosbe in the set defined by the class. If a
circumflex is actually required as a member ofdlass, ensure it is not the first character, or
escape it with a backslash.

For example, the character class [aeiou] matchgsoarer case vowel, while [*aeiou] matches
any character that is not a lower case vowel. N@ta circumflex is just a convenient
notation for specifying the characters which arthaclass by enumerating those that are not.
It is not an assertion: it still consumes a chamaftbm the subject string, and fails if the
current pointer is at the end of the string.

When caseless matching is set, any letters inss cé&present both their upper case and lower
case versions, so for example, a caseless [ae@miches "A" as well as "a", and a caseless
[*aeiou] does not match "A", whereas a casefulivaraould.

The newline character is never treated in any spe@y in character classes, whatever the
setting of the dot matching or multiline options &see below). A class such as [a] will
always match a newline.

The minus (hyphen) character can be used to speecdpge of characters in a character class.
For example, [d-m] matches any letter between dnanisiclusive. If a minus character is
required in a class, it must be escaped with adbask or appear in a position where it cannot
be interpreted as indicating a range, typicallyhasfirst or last character in the class.

It is not possible to have the literal charactérag the end character of a range. A pattern such
as [W-]46] is interpreted as a class of two chanac("W" and "-") followed by a literal string
"46]", so it would match "W46]" or "-46]". Howeveif,the "]" is escaped with a backslash it is
interpreted as the end of range, so [W-\]46] ierpteted as a single class containing a range
followed by two separate characters. The octakaxatiecimal representation of "]" can also be
used to end a range.

Ranges operate in the ASCII sequence of charaatees (corresponding to default C locale).
They can also be used for characters specified ncatlg, for example \000-\037].

If a range that includes letters is used when easehatching is set, it matches the letters in
either case. For example, [W-c] is equivalent f@ [Jwxyzabc], matched caselessly.

The character types \d, \D, \s, \S, \w, and \W aiag appear in a character class, and add the
characters that they match to the class. For exaM\pgIABCDEF] matches any hexadecimal
digit. A circumflex can conveniently be used witle tupper case character types to specify a

Adaptation © 2004 MacroExpressioiits://www.macroexpressions.com

Snob: Simple name obfuscator — regular expressions mefere 8

more restricted set of characters than the matdbimgr case type. For example, the class
["\W_] matches any letter or digit, but not undersc

All non-alphanumeric characters other than \,(at’the start) and the terminating] are non-
special in character classes, but it does no hattmey are escaped.

7. Vertical Bar

Vertical bar characters are used to separate alteerpatterns. For example, the pattern

gilbert|sullivan

matches either “gilbert” or “sullivan”. Any numbef alternatives may appear, and an empty
alternative is permitted (matching the empty sirifidne matching process tries each
alternative in turn, from left to right, and thesfione that succeeds is used. If the alternatives
are within a subpattern (defined below), "succeadsdns matching the rest of the main
pattern as well as the alternative in the subpatter

8. Match Options Setting

The default settings for match search can be clthingen within the pattern by a sequence of
Perl option letters enclosed between "(?" andThie option letters are

i for caseless (case-insensitive) matching

m for multiline matching (‘$’ asserts any \n, no t only the final)
s for dot-all (. matches \n)

x for extended syntax

For example, (?im) sets caseless, multiline matcHins also possible to unset these options
by preceding the letter with a hyphen, and a coetbsetting and unsetting such as (?im-sx),
which sets caseless and multiline while unsettioigall and extended syntax, is also permitted.
If a letter appears both before and after the hyptiee option is unset.

When an option change occurs at top level (thatasjnside subpattern parentheses), the
change applies to the remainder of the patterrfofiatvs.

An option change within a subpattern affects ohbt part of the current pattern that follows it,
SO

(@(?i)b)c

matches abc and aBc and no other strings. By th@&ns) options can be made to have
different settings in different parts of the patteiny changes made in one alternative do carry
on into subsequent branches within the same swdnpafor example,

(a(?i)blc)

matches "ab", "aB", "c", and "C", even though wihasttching "C" the first branch is
abandoned before the option setting.

Adaptation © 2004 MacroExpressioiits://www.macroexpressions.com

Snob: Simple name obfuscator — regular expressions mefere 9

Snob uses the underlying regular expressions nmgt@rigine provided by PCRE. In particular, Snobldiou
recognize the PCRE-specific options equivalent PGAREGREEDY and PCRE_EXTRA, which can be changed

in the same way as the Perl-compatible optionssbyguthe characters U and X respectiviiyis
recommended that U and X options not be used.

9. Subpatterns

Subpatterns are delimited by parentheses (rourukéts), which can be nested. Marking part
of a pattern as a subpattern does two things:

1. It localizes a set of alternatives. For examible,pattern

cat(aract|erpillar])

matches one of the words “cat", "cataract”, oréigatlar". Without the parentheses, it would

match "cataract"”, "erpillar" or the empty string.

2. It sets up the subpattern as a capturing sudrpaits defined above). When the whole
pattern matches, that portion of the subject stifiiag matched the subpattern is available for
use in other subpatterns. Opening parenthese®antet! from left to right (starting from 1) to
obtain the numbers of the capturing subpatterns.

For example, if the string “the red king” is matdregainst the pattern

the ((red|white) (king|queen))

the captured substrings are "red king", "red", ‘&mudg”, and are numbered 1, 2, and 3,
respectively.

The fact that plain parentheses fulfill two funcigas not always helpful. There are often times
when a grouping subpattern is required withoutpwang requirement. If an opening
parenthesis is followed by a question mark andl@¢ahe subpattern does not do any
capturing, and is not counted when computing thaber of any subsequent capturing
subpatterns. For example, if the string "the whiteen" is matched against the pattern

the ((?:red|white) (king|queen))

the captured substrings are “white queen” and “gyjesnd are numbered 1 and 2. The
maximum number of capturing subpatterns is 65588 the maximum depth of nesting of all
subpatterns, both capturing and non-capturingQ@s 2

As a convenient shorthand, if any option settingsraquired at the start of a non-capturing
subpattern, the option letters may appear betweeH’ and the “.”. Thus the two patterns

(?i:saturday|sunday)
(?:(?i)saturday|sunday)

match exactly the same set of strings. Becausmatiee branches are tried from left to right,
and options are not reset until the end of the atibm is reached, an option setting in one
branch does affect subsequent branches, so the gbtterns match “SUNDAY” as well as
“Saturday”.

Adaptation © 2004 MacroExpressioiits://www.macroexpressions.com

Snob: Simple name obfuscator — regular expressions mefere 1C

10. Named Subpatterns

Identifying capturing parentheses by number is fmput it can be very hard to keep track of
the numbers in complicated regular expressionghBtmore, if an expression is modified, the
numbers may change. To help with the difficulty, REC(and therefore Snob) supports the
naming of subpatterns, something that Perl doepmaeide. The Python syntax (?P<name>...)
is used. Names consist of alphanumeric charactersiaderscores, and must be unique within
a pattern.

Named capturing parentheses are still allocatedoeusras well as names

11. Repetition

Repetition is specified by quantifiers, which catidw any of the following items:

a literal data character

the . metacharacter

the \C escape sequence

escapes such as \d that match single characters

a character class

a back reference (see next section)

a parenthesized subpattern (unless it is an asser tion)

The general repetition quantifier specifies a munimand maximum number of permitted
matches, by giving the two numbers in curly brasKbtaces), separated by a comma. The
numbers must be less than 65536, and the first baukgss than or equal to the second. For
example:

z{2,4}

matches "zz", "zzz", or "zzzz". A closing braceitsnown is not a special character. If the
second number is omitted, but the comma is preteie is no upper limit; if the second
number and the comma are both omitted, the quansifiecifies an exact number of required
matches. Thus

[aeiou]{3,}
matches at least 3 successive vowels, but may maddy more, while

\d{8}

matches exactly 8 digits. An opening curly bradket appears in a position where a quantifier
is not allowed, or one that does not match theasyat a quantifier, is taken as a literal
character. For example, {,6} is not a quantifiest & literal string of four characters.

The quantifier {0} is permitted, causing the exmies to behave as if the previous item and
the quantifier were not present.

For convenience (and historical compatibility) theee most common quantifiers have single-
character abbreviations:

Adaptation © 2004 MacroExpressioiits://www.macroexpressions.com

Snob: Simple name obfuscator — regular expressions mefere 11

* is equivalent to {0,}
+ is equivalentto {1,}
? is equivalent to {0,1}

It is possible to construct infinite loops by falling a subpattern that can match no characters
with a quantifier that has no upper limit, for exae

(@?)*

Earlier versions of Perl and PCRE used to giveresr @t compile time for such patterns.
However, because there are cases where this aasehd, such patterns are now accepted, but
if any repetition of the subpattern does in factanano characters, the loop is forcibly broken.

By default, the quantifiers are "greedy"”, thatl®y match as much as possible (up to the
maximum number of permitted times), without caugimgrest of the pattern to fail. The
classic example of where this gives problems tsyimg to match comments in C programs.
These appear between the sequences /* and */ dhth Wie sequence, individual * and /
characters may appear. An attempt to match C consnbgrapplying the pattern

I*5*/
to the string

/* first comment */ not comment /* second comme nt */
fails, because it matches the entire string owinpé greediness of the .* item.

However, if a quantifier is followed by a questimark, it ceases to be greedy, and instead
matches the minimum number of times possible, sg#ttern

NN F\Y/

does the right thing with the C comments. The neaof the various quantifiers is not
otherwise changed, just the preferred number o€inest Do not confuse this use of question
mark with its use as a quantifier in its own rigBecause it has two uses, it can sometimes
appear doubled, as in

\d??\d

which matches one digit by preference, but can Imiato if that is the only way the rest of the
pattern matches.

When a capturing subpattern is repeated, the \waptired is the substring that matched the
final iteration. For example, after

(tweedle[dume]{3}\s*)+

has matched "tweedledum tweedledee" the valuesatdptured substring is "tweedledee".
However, if there are nested capturing subpattéinesgorresponding captured values may
have been set in previous iterations. For exanafier

I(al(b))+/

Adaptation © 2004 MacroExpressioiits://www.macroexpressions.com

Snob: Simple name obfuscator — regular expressions mefere 12

matches "aba" the value of the second capturedrsuhss "b".

12. Atomic Grouping and Possessive Quantifiers

With both maximizing and minimizing repetition, lizie of what follows normally causes the
repeated item to be re-evaluated to see if a diftenumber of repeats allows the rest of the
pattern to match. Sometimes it is useful to preteist either to change the nature of the
match, or to cause it fail earlier than it otheemmsight, when the author of the pattern knows
there is no point in carrying on.

Consider, for example, the pattern \d+foo wheniaggb the subject line

123456bar

After matching all 6 digits and then failing to rolat'foo”, the normal action of the matcher is
to try again with only 5 digits matching the \dent, and then with 4, and so on, before
ultimately failing. "Atomic grouping” (a term takdrom Jeffrey Friedl's book) provides the
means for specifying that once a subpattern hashedyi it is not to be re-evaluated in this
way.

If we use atomic grouping for the previous examgsle,matcher would give up immediately
on failing to match "foo" the first time. The ndtat is a kind of special parenthesis, starting
with (?> as in this example:

(?>\d+)foo

This kind of parenthesis "locks up" the part of platern it contains once it has matched, and a
failure further into the pattern is prevented frbatktracking into it. Backtracking past it to
previous items, however, works as normal.

An alternative description is that a subpatterthaf type matches the string of characters that
an identical standalone pattern would match, ihaned at the current point in the subject
string.

Atomic grouping subpatterns are not capturing stibpas. Simple cases such as the above
example can be thought of as a maximizing repedtrtiust swallow everything it can. So,
while both \d+ and \d+? are prepared to adjushthmber of digits they match in order to
make the rest of the pattern match, (?>\d+) cay maltch an entire sequence of digits.

Atomic groups in general can of course containtieably complicated subpatterns, and can be
nested. However, when the subpattern for an atgroigp is just a single repeated item, as in
the example above, a simpler notation, called asessive quantifier" can be used. This
consists of an additional + character followinguatifier. Using this notation, the previous
example can be rewritten as

\d++bar

Adaptation © 2004 MacroExpressioiits://www.macroexpressions.com

Snob: Simple name obfuscator — regular expressions mefere 13

Possessive quantifiers are always greedy. Theg aomvenient notation for the simpler forms
of atomic group. However, there is no differencéhiem meaning or processing of a possessive
quantifier and the equivalent atomic group.

The possessive quantifier syntax is an extensianet@erl syntax. It originates in Sun's Java
package.

When a pattern contains an unlimited repeat ingidebpattern that can itself be repeated an
unlimited number of times, the use of an atomiagris the only way to avoid some failing
matches taking a very long time indeed. The pattern

(\D+[<\d+>)*[!7]

matches an unlimited number of substrings thateeitbnsist of non-digits, or digits enclosed
in <>, followed by either ! or ?. When it matché&suns quickly. However, if it is applied to

ddaaaaaaaaaaaaaaaaaaadaaaaaaaaaaaaaaaaaaaaaaaaaaa aaa

it takes a long time before reporting failure. Tisibecause the string can be divided between
the two repeats in a large number of ways, andaad to be tried. (The example used [!?]
rather than a single character at the end, becHum® optimization that allows for fast failure
when a single character is used. They remembdashsingle character that is required for a
match, and fail early if it is not present in therg.) If the pattern is changed to

(?>\D+)|<\d+>)*[1?]
sequences of non-digits cannot be broken, and-éalilappens quickly.

13. Back References

Outside a character class, a backslash followedl digit greater than 0 (and possibly further
digits) is a back reference to a capturing subpagarlier (that is, to its left) in the pattern,
provided there have been that many previous caygtleit parentheses.

However, if the decimal number following the baelsti is less than 10, it is always taken as a
back reference, and causes an error only if theraeat that many capturing left parentheses in
the entire pattern. In other words, the parenthtéhsdsare referenced need not be to the left of
the reference for numbers less than 10. See thesentitled "Backslash" above for further
details of the handling of digits following a baldsh.

A back reference matches whatever actually mattiteedapturing subpattern in the current subject
string, rather than anything matching the subpaiteelf (se€Subpatterns as subroutindsélow for a
way of doing that). So the pattern

(sensj|respons)e and \1ibility

matches "sense and sensibility" and "responseesmbnsibility”, but not "sense and
responsibility”. If caseful matching is in forcethe time of the back reference, the case of
letters is relevant. For example,

((?)rah)\s+\1

Adaptation © 2004 MacroExpressioiits://www.macroexpressions.com

Snob: Simple name obfuscator — regular expressions mefere 14

matches "rah rah" and "RAH RAH", but not "RAH rabVen though the original capturing
subpattern is matched caselessly.

Back references to named subpatterns use the Pssintax (?P=name). We could rewrite the
above example as follows:

(?<pl>(?irah)\s+(?P=pl)

There may be more than one back reference to the sabpattern. If a subpattern has not
actually been used in a particular match, any bafdtences to it always fail. For example, the
pattern

(@l(be))\2

always fails if it starts to match "a" rather tHéc". Because there may be many capturing
parentheses in a pattern, all digits following Iaekslash are taken as part of a potential back
reference number. If the pattern continues witigéd dharacter, some delimiter must be used
to terminate the back reference. If the extendetlasyoption is in effect, this can be
whitespace. Otherwise an empty comment can be used.

A back reference that occurs inside the parenthesekich it refers fails when the subpattern
is first used, so, for example, (a\l) never matcHesvever, such references can be useful
inside repeated subpatterns. For example, therpatte

(alb\1)+

matches any number of "a"s and also "aba", "abdl#iaaAt each iteration of the subpattern,
the back reference matches the character stringsgmynding to the previous iteration. In order
for this to work, the pattern must be such thatffitis¢ iteration does not need to match the back
reference. This can be done using alternatiom #sei example above, or by a quantifier with a
minimum of zero.

14. Assertions

An assertion is a test on the characters followingreceding the current matching point that
does not actually consume any characters. The siagslertions coded as \b, \B, \A, \G, \Z, \z,
~and $ are described above. More complicated timse@are coded as subpatterns. There are
two kinds: those that look ahead of the currenttjposin the subject string, and those that look
behind it.

An assertion subpattern is matched in the normg| escept that it does not cause the current
matching position to be changed. Lookahead assersitart with (?= for positive assertions
and (?! for negative assertions. For example,

\w+(?=;)

matches a word followed by a semicolon, but dog¢snatude the semicolon in the match, and

foo(?!bar)

Adaptation © 2004 MacroExpressioiits://www.macroexpressions.com

Snob: Simple name obfuscator — regular expressions mefere 15

matches any occurrence of "foo" that is not folloviog "bar”. Note that the apparently similar
pattern

(?'foo)bar

does not find an occurrence of "bar" that is preddoly something other than "foo"; it finds
any occurrence of "bar" whatsoever, because tletass (?!foo) is always true when the next
three characters are "bar". A lookbehind assertioreeded to achieve this effect.

If you want to force a matching failure at somenpan a pattern, the most convenient way to
do it is with (?!) because an empty string alwaygahes, so an assertion that requires there not
to be an empty string must always fail.

Lookbehind assertions start with (?<= for positagsertions and (?<! for negative assertions.
For example,

(?<!foo)bar

does find an occurrence of "bar" that is not preddaly "foo". The contents of a lookbehind
assertion are restricted such that all the striinggtches must have a fixed length. However, if
there are several alternatives, they do not akhawhave the same fixed length. Thus

(?<=bullock|donkey)
is permitted, but

(?<!dogs?|cats?)

causes an error. Branches that match differenthestgngs are permitted only at the top level
of a lookbehind assertion. This is an extensionpamed with Perl (at least for 5.8), which
requires all branches to match the same lengttrinfs An assertion such as

(?<=ab(c|de))

is not permitted, because its single top-level binacan match two different lengths, but it is
acceptable if rewritten to use two top-level braaxh

(?<=abcl|abde)

The implementation of lookbehind assertions is,gach alternative, to temporarily move the
current position back by the fixed width and thigntd match. If there are insufficient
characters before the current position, the macteemed to fail.

PCRE does not allow the \C escape to appear irb&okd assertions, because it makes it
impossible to calculate the length of the lookbdhin

Atomic groups can be used in conjunction with lostkind assertions to specify efficient
matching at the end of the subject string. Consadg&mple pattern such as

abcd$

Adaptation © 2004 MacroExpressioiits://www.macroexpressions.com

Snob: Simple name obfuscator — regular expressions mefere 1€

when applied to a long string that does not maéBeltause matching proceeds from left to
right, PCRE will look for each "a" in the subjecidathen see if what follows matches the rest
of the pattern. If the pattern is specified as

A *abcd$

the initial .* matches the entire string at fidstit when this fails (because there is no following
"a"), it backtracks to match all but the last cloéeg then all but the last two characters, and so
on. Once again the search for "a" covers the estineg, from right to left, so we are no better
off. However, if the pattern is written as

A(?>.%)(?<=abcd)

or, equivalently,

A *+(?<=abcd)

there can be no backtracking for the .* item; it c@atch only the entire string. The subsequent
lookbehind assertion does a single test on thddastcharacters. If it fails, the match fails
immediately. For long strings, this approach maksegnificant difference to the processing
time.

Several assertions (of any sort) may occur in ssica. For example,

(7<=\d{3})(?<!999)foo

matches "foo" preceded by three digits that are'9@@". Notice that each of the assertions is
applied independently at the same point in theesuilsjtring. First there is a check that the
previous three characters are all digits, and there is a check that the same three characters
are not "999". This pattern doest match "foo" preceded by six characters, the @fsthich

are digits and the last three of which are not "988r example, it doesn't match "123abcfoo".
A pattern to do that is

(?<=\d{3}...)(?<!1999)foo

This time the first assertion looks at the precgdiix characters, checking that the first three
are digits, and then the second assertion cheekshé preceding three characters are not
II999II.

Assertions can be nested in any combination. Fameie,

(?<=(?<!foo)bar)baz

matches an occurrence of "baz" that is precedétdny which in turn is not preceded by
"foo", while

(2<=\d{3}(?!999)...)foo

is another pattern which matches "foo" precedethi®e digits and any three characters that
are not "999".

Adaptation © 2004 MacroExpressioiits://www.macroexpressions.com

Snob: Simple name obfuscator — regular expressions mefere 17

Assertion subpatterns are not capturing subpattantsmay not be repeated, because it makes
no sense to assert the same thing several timasy Kind of assertion contains capturing
subpatterns within it, these are counted for thpp@ses of numbering the capturing subpatterns
in the whole pattern. However, substring capturingarried out only for positive assertions,
because it does not make sense for negative asserti

15. Conditional Subpatterns

It is possible to cause the matching process tg almibpattern conditionally or to choose
between two alternative subpatterns, dependingp@nesult of an assertion, or whether a
previous capturing subpattern matched or not. Waeeppssible forms of conditional
subpattern are

(?(condition)yes-pattern)

(?(condition)yes-pattern|no-pattern)
If the condition is satisfied, the yes-patternsed; otherwise the no-pattern (if present) is used.
If there are more than two alternatives in the siiigon, a compile-time error occurs.

There are three kinds of condition. If the textimn the parentheses consists of a sequence of
digits, the condition is satisfied if the captursgopattern of that number has previously
matched. The number must be greater than zero.idevrike following pattern, which

contains non-significant white space to make itenaadable (assume the extended syntax
option in effect) and to divide it into three paias ease of discussion:

(\O? [0+ (@)V)
The first part matches an optional opening pareighand if that character is present, sets it as
the first captured substring. The second part negtcime or more characters that are not
parentheses. The third part is a conditional subpathat tests whether the first set of
parentheses matched or not. If they did, thaf sjbject started with an opening parenthesis,
the condition is true, and so the yes-patternéxeted and a closing parenthesis is required.
Otherwise, since no-pattern is not present, thpattérn matches nothing. In other words, this
pattern matches a sequence of non-parenthesesnalptienclosed in parentheses.

If the condition is the string (R), it is satisfididh recursive call to the pattern or subpatteas been made. At
"top level", the condition is false. This is a PCBEension. Recursive patterns are described ingRkesection.

If the condition is not a sequence of digits or, (Rjnust be an assertion. This may be a
positive or negative lookahead or lookbehind agserConsider this pattern, again containing
non-significant white space, and with the two al&tives on the second line:

(?(?=["a-z]*[a-z])

\d{2}-[a-z}{3}-\d{2} | \d{2}-\d{2}-\d{2})
The condition is a positive lookahead assertiohreches an optional sequence of non-
letters followed by a letter. In other words, gtefor the presence of at least one letter in the
subject. If a letter is found, the subject is matthgainst the first alternative; otherwise it is
matched against the second. This pattern matctiegssin one of the two forms dd-aaa-dd or
dd-dd-dd, where aaa are letters and dd are digits.

Adaptation © 2004 MacroExpressioiits://www.macroexpressions.com

Snob: Simple name obfuscator — regular expressions mefere 18

16. Comments

The sequence (?# marks the start of a comment whbiatinues up to the next closing
parenthesis. Nested parentheses are not pernitieccharacters that make up a comment play
no part in the pattern matching at all.

If the extended syntax option is in effect, an gaped # character outside a character class
introduces a comment that continues up to the mewtine character in the pattern.

17. Recursive Patterns

Consider the problem of matching a string in pareses, allowing for unlimited nested
parentheses. Without the use of recursion, thetbastan be done is to use a pattern that
matches up to some fixed depth of nesting. It tspossible to handle an arbitrary nesting
depth. Perl has provided an experimental facitiat allows regular expressions to recurse
(amongst other things). It does this by interpaatPerl code in the expression at run time, and
the code can refer to the expression itself. A Pattiern to solve the parentheses problem can
be created like this:

$re = ar{\((?: (?>["01+) | (?p{Sre}))* V}x;
The (?p{...}) item interpolates Perl code at rundj and in this case refers recursively to the
pattern in which it appears. Obviously, the intéagion of Perl code cannot be supported
outside Perl realm. Instead, PCRE supports sonwadggntax for recursion of the entire
pattern, and also for individual subpattern recursi

The special item that consists of (? followed uanber greater than zero and a closing
parenthesis is a recursive call of the subpattétheogiven number, provided that it occurs
inside that subpattern. (If not, it is a "subroeticall, which is described in the next section.)
The special item (?R) is a recursive call of theremegular expression.

For example, this PCRE pattern solves the nestemhifeeses problem (assume the extended
syntax option is in effect so that white spacegreored):

\CC>01H) T (?PR))*Y)
First it matches an opening parenthesis. Thentitima any number of substrings which can

either be a sequence of non-parentheses, or anezunatch of the pattern itself (that is a
correctly parenthesized substring). Finally thera closing parenthesis.

If this were part of a larger pattern, you would want to recurse the entire pattern, so instead
you could use this:

ACCE>01H) 1(?1))*Y)

We have put the pattern into parentheses, and @aliseecursion to refer to them instead of
the whole pattern. In a larger pattern, keepingktid parenthesis numbers can be tricky. It
may be more convenient to use named parenthegeadns-or this, PCRE uses (?P>name),

Adaptation © 2004 MacroExpressioiits://www.macroexpressions.com

Snob: Simple name obfuscator — regular expressions mefere 18

which is an extension to the Python syntax that PQRes for named parentheses (Perl does
not provide named parentheses). We could rewrg@bove example as follows:

(?P<pn>\(((?>["(01+) | (?P>pn))*\))

This particular example pattern contains nesteohiteld repeats, and so the use of atomic
grouping for matching strings of non-parenthesesportant when applying the pattern to
strings that do not match. For example, when thitepn is applied to

(aa aaaaa()

it yields "no match" quickly. However, if atomicayrping is not used, the match runs for a
very long time indeed because there are so maferelit ways the + and * repeats can carve
up the subject, and all have to be tested befdtedacan be reported.

At the end of a match, the values set for any camsubpatterns are those from the outermost
level of the recursion at which the subpattern eaduset.

(ab(cd)ef)

the value for the capturing parentheses is "efickvis the last value taken on at the top level.
If additional parentheses are added, giving

(RO TERY Y

N N

the string they capture is "ab(cd)ef’, the contefithe top level parentheses.

Do not confuse the (?R) item with the condition, (\Bhich tests for recursion. Consider this
pattern, which matches text in angle bracketsyatig for arbitrary nesting. Only digits are
allowed in nested brackets (that is, when recujsiwgereas any characters are permitted at
the outer level.

<(?: (2R) \d++ | [<>]*+) | (?R)) * >
In this pattern, (?(R) is the start of a condition#pattern, with two different alternatives for

the recursive and non-recursive cases. The (?R)ige¢he actual recursive call.
18. Subpatterns as Subroutines

If the syntax for a recursive subpattern refergedder by number or by name) is used outside
the parentheses to which it refers, it operatesdilsubroutine in a programming language. An
earlier example pointed out that the pattern

(sensj|respons)e and \1ibility

matches "sense and sensibility" and "responseesmbnsibility”, but not "sense and
responsibility”. If instead the pattern

(sensj|respons)e and (?1)ibility

Adaptation © 2004 MacroExpressioiits://www.macroexpressions.com

Snob: Simple name obfuscator — regular expressions mefere

2C

is used, it does match "sense and responsibiyvell as the other two strings. Such
references must, however, follow the subpattemttich they refer.

Adapted from: PCRE documentation:

pcrepattern.html.
Last updated: 03 February 2003
Copyright © 1997-2003 University of Cambridge.

Adaptation Copyright © 2004 MacroExpressions

Adaptation © 2004 MacroExpressioiits://www.macroexpressions.com

