Snob: Simple name obfuscator — Tutorial

Inexpensive protection of your source code

Snob

Simple Name Obfuscator

Tutorial

Version 1.0

MacroExpressions
http://www.macroexpressions.com

© 2004 MacroExpressionstp://www.macroexpressions.com

Snob: Simple name obfuscator — Tutorial 1

Table of Contents

0. STRUCTURE OF SNOB TUTORIAL ..ottt nae e e 2
1 INSTALLING AND UNINSTALLING SNOB.......ocoiiiiiieiesiienie st 2
2. WHAT EXACTLY SNOB DOES.cooooiiieiesieee et sttt ns 2
3. THE TEST PROJIECT ..ottt sttt sttt sttt ae s e nteaneesteaneesbeeneenns 3
4. CONFIGURING SNOB FOR THE BARK PROJECTcoiiiiiiiieiesieeiesieesie e 5
4.1 PROTECTING FILES FROM OBFUSCATION. INTRODUCING ARLEES.SNOB............ 5
4.2 INFORMING SNOB OF A PROGRAMMING LANGUAGE: DOTEXT.SQB 5
421 CommeNntS iN AOLEXE.SNODouiiiiiiiee ettt b e 6
4.2.2 Reusing a configuration: include= Statement.coceevie e e ciee e 6
4.2.3 Using pre-packaged configurations: USe= Statement..........ccocveevveeeiieeiiieeciee e 7
5. RUNNING SNOB AND INSPECTING RESULTS.....coiiiiieierieeie e 8
5.1 HOW TO RUN SNOBottt 8
5.2 SNOB OBFUSCATION MAP: PROJMAP.SNOB........cciiteeeeiiieiiieee e 9
6. SYNTAX OF A LANGUAGE DEFINITION FILEoooieiiiieeceeeee e 10
6.1 REGULAR EXPRESSIONS IN DOTEXT.SNOB......ccciiiiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee 10
6.2 STATEMENTS OF LANGUAGE-SPECIFIC CONFIGURATION FILES............ccccc...... 11
6.3 TELLING SNOB WHAT TO OBFUSCATE: NAME= STATEMENT ...cevvvviriiiiiiiiiiiiinnnns 12
6.4 TELLING SNOB WHAT TO REMOVE: COMMENT= STATEMENT ..oreeeeiiiiiiiiiieeen. 12
6.5 TELLING SNOB WHAT NOT TO CONFUSE WITH NAMES: KEYWOB= STATEMENT
12
6.6 TELLING SNOB WHERE NOT TO LOOK FOR NAMES: IGNORE= BTEMENT 13
6.6.1 Example: Adding pragma handling to dotC.snob...........ccccveviiiiii i, 13
6.7 TELLING SNOB WHERE NOT TO LOOK FOR NAMES IN ANY LA UAGE:
RESERVED= STATEMENTS ... oo e e e e e e e e e e e e e e e 16
6.8 INTRODUCING: STRING= STATEMENTSuutttiiiiiiuiuiinniiiniiininissss s ea e 16
7. ADDING RESERVED WORDS TO SNOB CONFIGURATIONccocviieieiienieseenieeienens 17
7.1 A METHOD OF PRESERVING THIRD-PARTY NAMES AUTOMATICALY 18
7.2 PRESERVING LITERAL WORDS IN ALL LANGUAGES: CONFIGURTION FILE
RESERVED.SNOB.......coiiiiiiiiiiii ittt et e aeaaeeeeeeaessesesssssnnnnnnees 19
8. S Y N PSS 21
8.1.1 Filesthat makeit tothetarget dir€Ctory treeccvevcveeeciee i 21
8.1.2 Filesthat Shob will not attempt to ObfUSCALE.ccocviviiiieie e 21
8.1.3 Namesthat Shob will not attempt to ObfUSCALE..........cceveviiieiiieecie e 21
8.1.4 SNOb configuration filES........ccocuii e 21
9. CONCLUSION ...ttt sttt e b e te st e sbeeseesbeeseesbeeneesbeeneesneenee e 22

© 2004 MacroExpressionstp://www.macroexpressions.com

Snob: Simple name obfuscator — Tutorial 2

0. Structure of Snob tutorial

This tutorial introduces the use and configuratb®&nob, or Simple Name OBfuscator. Its objectsre i
to replace meaningful names in your project witlaniegless ones in an irreversible way and to
remove comments. We introduce a toy project in € damonstrate how to work with and configure
Snob.

Snob by itself is independent of the programmimgyleage(s) used in your project. Instead, it raies
language-specific configuration files.

Correspondingly, we will show Snob usage in casdahguage configuration files are already
available, at least in the most basic version. The'tl explore the insides of the language
configuration files

1. Installing and uninstalling Snob

Snob is a standalone executable, and a rather sn®alby today’s standards. Just copy the Snob
executable filesnob.exe to some directory, such &\Snob (as we will assume from now on),
and that completes the installation. If you haveidaonfiguration files, copy them to the same
directory. If you feel like that, you may want tdcaC:\Snob to your PATH environment variable.

To uninstall Snob, simply remove the Snob direc@r\Snob or whatever the name you gave to it.

2. What exactly Snob does

Snob, we said, obfuscates names and removes comr8enb, we said, is a tool independent of your
project’s programming language(s). Therefore, titslgpb, Snob must be told:

* what a name is, and

* what a comment is

Given only those definitions, Snob is ready totddab, but you will almost certainly not like the
results. The reason is that Snob will replace nbt wour own identifiers, but also anything thavks
like a name to it. However, your project’s prograimgianguage may have elements lexically
indistinguishable from names (such as keywordsjtloer language constructs (likegagma s) that
should not be touched at all. Therefore, to dlsproperly, Snob must be told:

» wherenot to look for a name

« where to look for a name differently — and how

« what name-like looking text is not a name (sucbmsak in C)

These configuration items taken together defineognamming language to Snob.
Turning attention to your project, we observe thate may be

» the whole files that should not be obfuscated

» other names that should not be obfuscated
Files that you don’t want obfuscated are, for ins&a your API (application programmer’s interface)
files that you deliver to your customer, or anyampanying application examples.
Other names not to be obfuscated include, formtstathe APl names of a third-party library you are
using in your project, or any language extensiansiged by your compiler.

To summarize, Snob configuration for your projemsists of

© 2004 MacroExpressionstp://www.macroexpressions.com

Snob: Simple name obfuscator — Tutorial 3

e Language-specific configuration, largely indepeniddryour particular project, and
« Project-specific configuration, largely independehthe languages used.

In this tutorial, we introduce a toy project, Bairkthe C programming language and follow the steps
needed to obfuscate it using Snob.

3. The test project

Consider a toy project in the C language that wetw@obfuscate because we deliver it in the source
code format.

It contains a single function as its public intedfgbark() , which takes a pointer to a character string
and prints it to the standard output, but prefindth “BARK: " and ending with three exclamation
points. E.g., given “Hello, world!” it would prifBARK: Hello, world!'!\n".

We implemented this function in two files and two headers, oreark.h) for the public interface
and onelgarkpriv.h) as internal public header.

Here is our implementation:

bark.c:

/* Here is an implementation of Bark */
#include <stdio.h>

#include "bark.h"

#include "barkpriv.h"

void bark(constchar *str)

{
printf(BARK _PREFIX); Iprint prefix
bark_internal(str); /lprint the rest
}
barkpriv.c

/* Here is an implementation of Bark's internals */

#include <stdio.h>
#include "barkpriv.h"

unsigned int interval = 17u; /ljust for kicks

void bark_internal(const char *str)

{
printf("%s" , str); /Ineed "%s" in case str contains formatting
printf(BARK_SUFFIX); Ilprint suffix

}

© 2004 MacroExpressionstp://www.macroexpressions.com

Snob: Simple name obfuscator — Tutorial 4

barkpriv.h
[* This is the private header of the terrific Bark package */

#define BARK_PREFIX "BARK:"
#define BARK_SUFFIX "!II\n"

extern void bark_internal(constchar *);

And, finally,

bark.h

[* This is a public API of the terrific Bark packag e*

extern void bark(constchar *);
In addition we want to provide a self-test whichves also as an illustration to an application note
barktest.c

[* This is a self-test and an example of the bark ¢ ode */
/* Bark will output "BARK: ", then your string
and then three exclamation points and a newline.
*/
#include <stdio.h>
#include <string.h>
#include "bark.h"

int main()

char buf[200];
printf(">"), /lprompt
while (NULL!=fgets(buf, sizeof (buf), stdin)) {
size_t len = strlen(buf);
if (len>0){
if (bufflen-1] !="\n") {
//We didn't get the whole string; try again

printf(
(ERROR) String too long. Try again\n\n")
}
else {
buf[--len] = O; /ltruncate the newline
}
}
if (len==0){
printf("Bye\n");
break ;
}
bark(buf);
fflush(stdin); /start clean;
printf(">"); [lprint prompt

© 2004 MacroExpressionstp://www.macroexpressions.com

Snob: Simple name obfuscator — Tutorial 5

}

return O;

}

This is the project that is suppliedBark\Code directory in the distribution. You can actuallyillou
it and play with barking output.

4. Configuring Snob for the Bark project

If you have not done so already, unzip.aitob files in the distribution t&€:\Snob where
snob.exe is as well. Thesnob files are basic-level configuration files for thdabguage. And
yes, for now we’ll assume that the most basic gumfition for your programming language exists.

4.1 Protecting files from obfuscation. Introducing APIfiles.snob
First of all, the filedbark.h andbarktest.c represent our API. We don’t want to obfuscate them

at all. The way to inform Snob about it is to tiseém in your project'#\PlIfiles.snob file. So,
let's createAPlfiles.snob in Bark\Code
APlIfiles.snob
bark.h
barktest.c
Any subdirectory in the project directory tree nieye a file namedPlfiles.snob . Its syntax is as

follows: each non-empty line is a file specificatiof file(s) considered your API. The filespec camtain
wildcards (*' and ‘?’); in this case all matchiriges are considered API.

Snob treats the API filespecs as follows:
- If the filespec does not contain any directory infation, not even.\ ', this is treated as real, real
API file in the same directory as tAéIfiles.snob itself.
o If the filespec contains wildcards, Snob would ségi any match as API but would not
complain if it didn't find any.
o If the filespec does not contain wildcards, i.eis just a filename, Snob would exit with an
error information if the file didn’t exist and Sn&hows configuration for its extension.
o If Snob doesn’t know the extension configuratianyauld ignore the filespec match.
< If the filespec does contain any directory inforimatwhatsoever, Snob would learn names from any
filespec match with known extension configuratiom anark them as preserved (i.e., not subject 1o
obfuscation). The net effect of this is that tHesjpec matches with known extensions and found jn
the project directory tree would be stripped off aomments but all names in them would be
preserved.

4.2 Informing Snob of a programming language: dotext.snob
Now we need to produce the extension-specific goinfition files.

To decide how to obfuscate a ffilename. ext , Snob searches for a configuration file with a
fixed namedot ext .snob (so, for cpp files Snob will search faotcpp.snob).

© 2004 MacroExpressionstp://www.macroexpressions.com

Snob: Simple name obfuscator — Tutorial 6

Snob’s rule of search is as follows: first looktle directory where the filéijename.ext , is located and
then go up the directory tree all the way to tha i the project directory (such Bark\Code above). The
first configuration file found takes effect. (It ;mhe said that subdirectories that do not have the
configuration inherit it from their parent direcgpand those which do have it override the inhdrite
configuration, if any.) If none is found, Snob fitydooks for it in its own directory@:\Snob).

If the configuration is not found, the fillename.ext , Will not be processed into the target directory
tree. For instance, we do not provitl&snob.snob , so Snob configuration files, which have the esiam
.snob , are skipped.

First of all, since the project is in the C prograimg language, we need to create configuratiorit fa
files have, by convention, extensian, so, by Snob convention, the name of the confifpmdile for
it is dotc.snob

C has something of an oddity in that it has “hedities” which, being perfectly good C files, has,
convention, a different extensiam, . So, to create a configuration for C, we needcarse
configuration file,doth.snob

4.2.1 Comments in dotext.snob

4.2.2 Reusing a configuration: include= statement.

Good news is that however we decide to configlote.snob , we should configurdoth.snob

the same way, simply because the header filesthaveame syntax. (Things get more complicated if
we throw C++ into the language mih files may have C or C++ syntax — or both. This enatt
discussed in the manual and we skip it in the iaitpinstead of copyingotc.snob to

doth.snob and thus creating ourselves a maintenance hegdaehzeate the following

doth.snob
Same configuration as in dotc.snob
include=dotc.snob

The first line is a comment; any line starting witbn-keyword is a comment and it is safe to start a
comment with a blank, as we just did.

The second line contaimsclude= keyword; it instructs Snob to read configuratioonfi another
file as if it were textually included. The filenan®include isdotc.snob |, the one that we are going
to create next.

© 2004 MacroExpressionstp://www.macroexpressions.com

Snob: Simple name obfuscator — Tutorial 7

Snob has rules (covered in the manual) on whesedoch for the file to include:

< If no path information is specified, it searchestfin the directory where the current file
(doth.snob) itself is located and all the way up to the teyel of the project directory. If still
not found, the file is searched in the directoryerehthe Snob executablmob.exe | is located.

< Ifthe path part is present and resolves to aivelgiath, it is considered relative to the diregtor
where the current file is located

< Ifthe path is not relative, Snob looks for the fdxactly where specified

< If Snob cannot find the file, it reports an erradaexits.

In our case, since no path information is spegifiesearches first in the directory wheteth.snob
itself is located and all the way up to the topelesf the project directory.

Since our project directory tree is quite simpieeontains just the project root directddpde, we put
ourdoth.snob right there. If we had a few subdirectories, eachld inherit the configuration from
the parent directory, if present. However, anyadogy may have its owdoth.snob which would
override the inherited configuration.

We are done withloth.snob ; let's concentrate on the configuration file,dotc.snob . We'll
put it in the same director@ode .

4.2.3 Using pre-packaged configurations: use= statement.

We want to make use of a basic language configuratve start with this:
dotc.snob

use=C99base.snob

Theuse= statement is similar to theclude= statement we've seendloth.snob ; the only
difference is that Snob looks for the specified 6ihly in its own directory@:\Snob).

So, we included the base C configuration pre-pasttagC99base.snob . In the Snob directory,
there is another similarly named filE90base.snob , which is also a C configuration file but
corresponding to the previous revision of the @daad. That revision didn't allow tHé -comments
we use in the Bark project, so we need the newdatan (Your compiler may be C90 and allw-
comments as a language extension. Snob knows riohis.p

The Bark project uses a few C standard librarysaalid macros; their names must not be obfuscated.
(The same, by the way, applies to the stantigpedef s,struct , union andenumtags and
members.) As to the definitions of them, the Sniobctbry contains two files to choose from:
Crsvnormal.snob andCParanoia.snob . The first file contains commonly used reserved
words; the second one reserves anything claim#tkistandard however mildly; for instance, it
reserves names beginning with an underscore (Ugllysyou’ll be OK with the first file, which we

add now to oudotc.snob

use= Crsvnormal.snob

We are ready to obfuscate our Bark project.

© 2004 MacroExpressionstp://www.macroexpressions.com

Snob: Simple name obfuscator — Tutorial 8

5. Running Snob and inspecting results

5.1 How to run Snob

Snob is a command-line utility that takes two argata: your project directory and the name of the
directory which will contain the obfuscated versafryour project, e.g.,
snob MyProject MyObfuscatedProject

The target directory must not exist yet and itatamn must be writeable.

Snob will create the target directory and clonedinectory tree of the project directory (with rike$ in
the target tree yet). Then it will look at eacle fih the project tree, such as and examine itqside,
.ext in this case.

The configuration filesdoth.snob , dotc.snob andAPIfiles.snob) are supplied in
Bark\Stepl directory. If you didn't work along, simply copldse files tdBark\Code . Now

change tdBark directory and issue the following command:
C:\Snob\snob Code Obfl

Here is the Snob output in all its glory:

Looking for configuration files under "Code"
Entering directory "Code"
Searching configuration for the extension .snob
No configuration file dotsnob.snob found
Searching configuration for the extension .c
Found configuration dotc.shob in Code
Searching configuration for the extension .h
Found configuration doth.snob in Code
Leaving directory "Code"
Done looking for configuration files
Looking for API specs under "Code"
Looking for configuration files under "Code"
Entering directory "Code"
Marking bark.h copy-only
Marking barktest.c copy-only
Leaving directory "Code"
Done looking for API specs
Processing project "Code" to "Obf1"
Entering directory "Code"
APIfiles.snob -- skipping
bark.c --> Obfl\bark.c (process)
bark.h --> Obfl\bark.h (copy)
barkpriv.c --> Obfl\barkpriv.c (process)
barkpriv.h --> Obfl\barkpriv.h (process)
barktest.c --> Obfl\barktest.c (copy)
dotc.snob -- skipping
doth.snob -- skipping
Leaving directory "Code"
Writing obfuscation map to Obfl\projmap.snob
End processing the project

© 2004 MacroExpressionstp://www.macroexpressions.com

Snob: Simple name obfuscator — Tutorial 9

Finished

We can see that Snob created the directory steianoletObfl identical to that oCode. Let's take
a look at non-API files it created:

bark.c

#include <stdio.h>
#include "bark.h"
#include "barkpriv.h"

void bark(constchar *C0000000B)

{
printf(C0000000C);

C0000000D(C0000000B);
}

barkpriv.c

#include <stdio.h>
#include "barkpriv.h"

unsigned int COOO0000E = 17u;

void C0000000D(const char *C0000000B)

{
printf("%s", CO000000B);

printf(CO000000F);
}

barkpriv.h

#define C0O000000C "BARK:"

#define COOO0000OF "I'Mn"

extern void C0000000D(constchar *);

It seems quite clear that it is not for human eyes.

5.2 Snob obfuscation map: projmap.snob

It may be interesting to look at the obfuscatiorpménich Snob saves in the filgojmap.snob in
the target directory:

projmap.snob

#Snob Substitution Table for the project "Code"
C0000000B : str

C0000000C : BARK_PREFIX

© 2004 MacroExpressionstp://www.macroexpressions.com

Snob: Simple name obfuscator — Tutorial 1C

C0000000D : bark_internal
COOO0O00O0O0E : interval
CO000000F : BARK_SUFFIX

The first line is the title; following it is a ligif pairs —a name that Snob invented vs. a naatexths
replaced by the invented name.

6. Syntax of a language definition file

To this point, we carefully avoided a questiontaf format of the file€rsvnormal.snob and
C99base.snob that we used. Since those files were only goodhidusion indotc.snob , we
are actually going to talk about the syntaxiof ext .snob files in general.

6.1 Regular expressions in dotext.snob

Let’s begin with a motivational example. In C (aB+) there is a rather interesting feature, although
rarely used: the stringize operator. Consider aandefinition

#define MYSTRING(X) #x

If you write then

char *p = MYSTRING(Because | can);

the macro expands to a double-quoted string afeeppcessing, but Snob has no way of knowing that.
So, Snob will treat the words “Because,” “l,” “caa$ names and replace them with invented names,
which is not what we want.

Clearly, Snob must be told to treat text in paresés preceded by the wdvtY STRINGas a string, so
as to not look for names there.

Unfortunately, this cannot be done in the commangackaged language configuration file like
C99base.snob. That’s because the name of the masrovented within your project, and cannot be
known in advance. So, we need to do this ourselves.

To re-iterate, we want to designate as a strinddif@ving definition: “text in parentheses precddsy
the wordMYSTRING' This is a rather complex idea and Snob needdher expressive means to
express such ideas.

In language-specific configuration files, Snob ussggllar expressions to express complex
configuration rules.

Regular expressions are, in a way, text searckmpattBy telling Snob that a string is such andhsuc
regular expression, we mean (and Snob understtratsd segment of text matching a search by the
regular expression is considered a string.

(There are several flavors of regular expressisnsb uses PCRE, Perl-compatible regular
expressions. The PCRE library, which is open sosiofsvare, is written by Philip Hazel, and copytigh
the University of Cambridge, England. See

ftp://ftp.csx.cam.ac.uk/pub/software/programming/pc re/

© 2004 MacroExpressionstp://www.macroexpressions.com

Snob: Simple name obfuscator — Tutorial 11

A reference of Snob regular expressions, whicmiadaptation of PCRE reference, is provided in the
distribution and also online on the Snob pages aéfMdExpressions website.)

A suitable regular expression for our verbal défini of a string is
\bMYSTRING\(.*?\)

(In regular expressions, parentheses are useddopigg, just like in math expressions. To giventhe
their literal meaning, they must be “escaped” witbackslash, as we have in the expression aboee. Th
dot means “match any character” and the “*?” meapgated any number of times “ungreedy” — so
that the first, rather than the very last rightqgrainesis will end the search. The starting \b reguhat

the match begins on the word boundary.)

It's worth noting that the wortY STRINGtself will not be obfuscated because it is a pathe

search pattern. If we want to obfuscbt® STRINGwe need to exclude it from the search pattern. To
do so, we can say that a string is any parentheséze if it follows the word'YSTRINGThe

following regular expression corresponds to thiprimved definition:

(?<=\bMYSTRING)\(.*?\)

So, we have a perfectly good regular expressiom, M@ need to tell Snob, in odotc.snob file,
that it defines a string. This is done gi&ing= statement which will be covered in its turn.

6.2 Statements of language-specific configuration files
It is time to discuss general syntax of languageetie configuration files. Recall that for exteosi
.ext the name of the configuration filed®text.snob and that the configuration file acts on the

directory it is located in and down the directamget until overridden in some subdirectory by aiith
the same name.

A dotext.snob file consists of statements and comments. A coniieeanything that is not a
statement. Since all statements start from thegwsition, it is safe to start comment lines vathlank
space, as we were doing all along in the example.

The following statements are recognized by Snaob:
* name=<regexp>
e keyword=<regexp>
e ignore=<regexp>
* reserved=<regexp>
e string=<regexp>
» string=<regexp> name=<regexp>
e comment=<regexp>
e include=<filespec>
e use=<filespec>

Here<regexp> is a Perl-style (or, more precisely, PCRE-styégjular expression and

<filespec> is a filename with optional path component. Notlta there are no spaces around the
= sign.

© 2004 MacroExpressionstp://www.macroexpressions.com

Snob: Simple name obfuscator — Tutorial 12

We already encounter@dclude= anduse= statements. Let's look at the other statements fie
list above.

6.3 Telling Snob what to obfuscate: name= statement

Since Snob is a name obfuscator, it needs to knloat the names are. Since the notion of a name is
language-dependent, Snob thinks a name is any nmatichegular expression. For instance, if we
inspectC90base.snob use="ed indirectly in ourdotc.snob , we find the following text:
Names are made of underscores, letters and digits and

start with non-digit, starting on a word boundary.

name=\b[_A-Za-z][_0-9A-Za-z]*

That is, a name starts on a word boundary witlora letter (upper- or lowercase) followed by a
sequence of underscores, letters and digits. (S)342005UL , UL is not a name since it doesn’t
start on a word boundary.) This “word boundary'ffsisinot mentioned in C textbooks because C
extracts a C language token and decides whetlsea ihame. Snob has no idea of C tokenization and
therefore needs a self-contained definition.

Generally speaking, there may be more thannmame= statement; different definitions would act as
alternatives. This is also true for all other staats with regular expression arguments. In case of
name=, though, you'll hardly ever need more than oneénitén.

6.4 Telling Snob what to remove: comment= statement

Since Snob promises to remove comments, it neekisoiw what the comments are. Even if Snob
doesn’t remove a comment (as in an API file), dudt not confuse any text in a comment with a name.
Comments are defined by a regular expression sgpla acomment= statement. Again, from
C90base.snob

Multi-line comment
comment=(?s)(/*.*?*/)

which means that a comment is any text betw&emnd the next/ , where th€?s) option allows
the dot to match the end-of-line character. Noa $ingle-line comments are not in
C90base.snob : they made their official entry to the C world Wi€99. That's why we included
C99base.snob in our example.

6.5 Telling Snob what not to confuse with names: keyword= statement

In many languages, C included, keywords are lelyiciinilar to names: we just have to remember that,
say,switch is a keyword. Th&eyword= statements tell Snob what words are keywords and
thereforenot names. Here is another quote fr&f0base.snob

Language keywords (start and end on the word bound ary)

keyword= \b(auto|break]|c(ase|har|on(st|tinue))|d(efault|ojou ble))\b
keyword= \b(f(loat|or)|gotoli(fnt)|long|re(gister|turn))\b

keyword= \b(s(hort|i(gned|zeof)|t(atic|ruct)|witch))\b

keyword= \b(typedeflun(ion|signed)|vo(id|latile)|while)\b

keyword= \b(define(|d)|if(|n)def|eliflinclude|endif)\b

© 2004 MacroExpressionstp://www.macroexpressions.com

Snob: Simple name obfuscator — Tutorial 13

keyword= \b(e(Ise|num|xtern)|include|undef|pragma)\b

The right-hand sides of theyword= statements are regular expressions covering sbthe €
language keywords. The representation syntax weechere is a bit twisted (as the syntax of the
regular expressions themselves); the last statesiastgood as more readable

keyword= \b(else|enum|extern|include|undef|pragma)\b
but the original format is arguably slightly faster

Taken together, olteyword= statements cover all C keywords. Of course, wédgoool all
keywords in a single statement (and that would n&kab run faster), but for presentation purposes we
avoid excessively long lines.

Note that if a name cannot be confused with thguage keyword (as in Perl, for instance), we do not
need to spell out the actual keywords.

6.6 Telling Snob where not to look for names: ignore= statement

There may be constructs in the language otherttf@keywords that must be left intact. It would be
entirely correct to use this regular expressioakeyword= statement. However, for purely aesthetic
reasons, Snob has a different statenmignipre= , which just looks better with tricky regular
expressions. Thignore= syntax is functionally equivalent k®eyword= , the only difference

being a different connotation: we tend to thinkef/word= as of a finite collection of distinct words
whereasgnore= s thought of as an arbitrarily complex regulapression. An example comes
again from C90base.snob:

Ignore <>-includes
ignore= (?m)"[tJ*\#[\t]*include[\t]*<.*?>

6.6.1 Example: Adding pragma handling to dotc.snob

Imagine that you need to use a compiler-spetifitagma statement ifbark.c , like this (also in
subdirectoryStep2):

bark.c
/* Here is an implementation of Bark */

#include <stdio.h>
#include "bark.h"
#include "barkpriv.h"

#pragma optimize(atp” , on)
void bark(constchar *str)

{
printf(BARK _PREFIX); Iprint prefix
bark_internal(str); /lprint the rest

© 2004 MacroExpressionstp://www.macroexpressions.com

Snob: Simple name obfuscator — Tutorial 14

}

If we run Snob:
C:\Snob\snob Code Obf2

and inspect the obfuscated version, we are upgirtion:
bark.c (obfuscated)

#include <stdio.h>
#include "bark.h"
#include "barkpriv.h"

#pragma C0000000B("atp" , CO000000C)
void bark(constchar *C0000000D)

printf(CO000000E);
CO000000F(C0000000D);

}

Snob messed up tiggagma statement and it is no longer usable! It meanstitae is a bug in the
configuration files that we used, and it needsaadrrected. We will correct it idotc.snob

6.6.1.1 Making our own ignore= statement
We want to let Snob know thatagma statements must be ignored, i.e., left untouched.

Let’s invent a regular expression describingragma statement in C. Since the syntax gfragma
statement is entirely compiler-dependent, it lolikes Snob needs to ignore everything from the
#pragma statement to the end of the line:
#pragma.*$
That's a good start, but we need to make sure that:

* pragma starts at the beginning of a line (* marker)

« therefore the subject text must be considered +indti—(?m) option

 there are optional blank spaces before and aft¢nt}*

e and there is at least one blank afteagma —[\t]

Here is the candidate:
(?m)N 4] \tP*pragmal \t].*$

This expression meets our verbal definition, balbaer look at the definition itself reveals a dewb:

If a comment starts after tigagma on the same line and continues on to the next tivie regular
expression will cause Snob to skip beyond the ginof the comment and thus to misunderstand —
and partially obfuscate — the comment instead mibreng it. Most likely, thus obfuscated code won't
even compile.

A remedy is to include an assertion that there mast ,// or end of line after thpragma
statement(?=/(*|/))|$) . In addition, the dot matches the first, rathemtkhe last occurrence
(.*? instead of*) .Here is our final version:

© 2004 MacroExpressionstp://www.macroexpressions.com

Snob: Simple name obfuscator — Tutorial 15

ignore=?m)"[\tJ*#[\t}*pragmal \t].*?((?=/(*|/)) 1$)
which we put in oudotc.snob

You can now run Snob again and see thapti@ma is now handled correctly, even if we add a

wicked comment, like this:
bark.c
/* Here is an implementation of Bark */

#include <stdio.h>
#include "bark.h"
#include "barkpriv.h"

#pragma optimize("atp" ,on) /* Take
this */
void bark(constchar *str)

printf(BARK _PREFIX); Iprint prefix
bark_internal(str); /lprint the rest
}
Here is the obfuscated version:
bark.c

#include <stdio.h>
#include "bark.h"
#include "barkpriv.h"

#pragma optimize("atp" , on)
void bark(constchar *C0000000B)

printf(C0O000000C);
C0000000D(C0000000B);

}

Our fix worked! We can even put it @99base.snob !

An inquisitive reader may observe, however, thatioyplementation is still flawed: Apragma
syntax may allow a string in@ragma statement (as it is in our example) and this gtnray
conceivably contain a marker, s&y,, which is not a start of a comment because itd&le the string
and therefore should not count. Not that it catr@handled correctly, but it is certainly rathardlved
and beyond the scope of this tutorial and, quaekty, not worth it.

Another problem is generic and has to do with diastinuation marker in C (and equally C++) —a
backslash followed by a newline. Line continuatiam cut through a language token, like this:
#inc \

lude <st\

dio.h>

© 2004 MacroExpressionstp://www.macroexpressions.com

Snob: Simple name obfuscator — Tutorial 1€

Snob has no idea of this line continuation syntagroperties, so this crazy stuff has to be captire
regular expressions. While this is theoreticallggible, it would make the regular expressions
monstrous and Snob very slow. Besides, line coations cutting through names will almost certainly
confuse Snob. However, since no-one codes in sgthdn, the best solution is to be aware of the
potential problem and ignore it.

6.7 Telling Snob where not to look for names in any language: reserved=
statements

A variation on the theme of preserving certain rmimg¢hereserved= statement.

Its meaning is similar to the meaning of keyword= statement buteserved= collects names
cumulatively regardless of the subdirectory whieedonfiguration file withheserved= statement is
located, as opposed to overriding actiomgofore= in subdirectories.

More importantly, for projects written in severahuagesignore= limits its action to files with the
extension linked to the configuration file, eserved= acts on files with any extension as long as a
file with the linked extension exists. It's a hizky, so let's consider an example of C and, s&0@
language. If your project is written in FOO, it magve a name, sastrcat . You can use it as you
please. Now you add C files to your project, aratdtrcat has a special meaning of a standard
library function. At this point, Snob has no idehetherstrcat in a FOO file is FOO’s own or it is a
reference to C'strcat . On the grounds that it's better to be safe tlrysSnob should assume the
worst and presenagrcat if C files are present in the project. That's thission of theeserved=
command.

Here is a shortened example afeserved= statement fronCParanoia.snob from the
C:\Snob directory:

Paranoia: reserved for the future and anything clai med by the
standard

reserved= \b(LC_|SIG)[A-Z]|(is|mem|str|to]wcs)[a-z]|_)[_0-9A- Za-z]*

According to this definition, words starting wikiC _, or with SIG followed by an uppercase letter, or
with is , memstr ,to orwcs followed by a lowercase letter, or with an underscare reserved. If
CParanoia.snob is included indotc.snob , Snob won't obfuscate these names. This may
appear too draconian a restriction, so we includexdir dotc.snob another file,

Crsvnormal.snob , which is compliant with the C90 ISO/ANSI standard

6.8 Introducing: string= statements
One more place where Snob may confuse names witinames is inside literal strings.

In some languages (like C or C++) a string is agtisma string: everything inside a string is taken
literally. A definition of a string can be then adbvia thegnore= statement. For reasons which can
also be called aesthetic, there is a synorstnmng= . Here is a C example from C90base.snob:

© 2004 MacroExpressionstp://www.macroexpressions.com

Snob: Simple name obfuscator — Tutorial 17

String goes from one unescaped quote to the next
string= (?<N)\".*?(?<N\)\"

While we are at it: we don’t want Snob to toucbkrtl characters either. For Snob, it doesn’'t malitr
there may be only a single character in‘a Gstring:

A character is a string for our purposes (with sin gle quotes)
string= (?<N)\"*?2(?2<N)\

Now we can also form a statement protecting C/Cringst defined by the stringize operator as we
discussed earlier:
string= (?<=\bMYSTRING)\(.*?\)

Since the name of the macro is defined within tfugegt, this definition cannot go to a pre-packaged
configuration file; its place is idotc.snob

In other languages, like UNIX shell script language Perl, a name is recognized within a string
“literal” in certain circumstances (such as in alde-quoted string if preceded by an unescapeld).
those cases Snob recognizes an extended syntestrofge statement: a definition is followed by a
single space followed byrsame= statement. The latter takes a regular expresstining what a
name within a string might be. See a discussiothisnin the manual. This form of tls¢ring=
statement allows Snob to look for names in liteteihgs using a different (usually, a more restrat
definition of a name. For instance, a statement

string= (2<N)\".*?(?2<N\H)\" name=(?=\$)[_A-Za-z][_A-Za-z0-9]*

recognizes “usual’ names in a double-quoted sifittgey follow a dollar sign.

7. Adding reserved words to Snob configuration

If you are comfortable with regular expressiongd(dmot, consult the reference included), you are
almost ready to configure Snob for a different pamgming language: you “simply” need to define the
language elements via regular expressions as dedagarlier and fill out youlPlIfiles.snob

file, if any.

The only missing part is reserved words. These doome two main sources:
« Non-standard language extensions provided by yoonpder (such asasm, interrupt or
locate inC)
e Third-party code (such as, for C++, Microsoft FourmaClasses, which are a nice addition to
C++ standard compiler but are not a part of the laggistandard).

The first source has just several words; you caimflir them in your compiler documentation and add
manually todotc.snob . You can do so only once and at any time duringeld@ment.

The second source is usually plentiful; addingrdserved words by hand may be an intimidating task.

What's even worse, if you change your vendor of savitiget implementation, you are likely to need
to redo the third-party name collection.

© 2004 MacroExpressionstp://www.macroexpressions.com

Snob: Simple name obfuscator — Tutorial 18

7.1 A method of preserving third-party names automatically

Is there a way to automate this? In many casestlya® is. We'll explore the options on C, wittr ou
toy project in mind.

For the sake of example, let’s treat standard na®sdkird-party and remove the line

use= Crsvnormal.snob

from ourdotc.snob file. Also, we need to remov&PlIfiles.snob temporarily, because
snobtest.c has too many names preserved.

If we run Snob now, it would take the now “thirdryél names and obfuscate it, as the following
obfuscation map shows:

Obf4\projmap.snob

#Snob Substitution Table for the project "Code"
C00000000 : bark

C00000001 : str

C00000002 : printf

C00000003 : BARK_PREFIX

C00000004 : bark_internal

C00000005 : interval

C00000006 : BARK_SUFFIX

C00000007 : main

C00000008 : buf

C00000009 : NULL

COOOO000A : fgets

C0000000B : stdin

C0000000C : size_t

C0000000D : len

COOO0O0OO0OE : strlen

CO000000F : fflush

Snob’s excesses are shown in bold.

The first insight is that all those names appear lieader of the “third-party” code. What we can do
immediately is to tell Snob to preserdé third-party names. The vehicle to do this is the
APlfiles.snob file. It accepts wildcards in the filenames, stsladd the following lines to the
now-emptyAPlfiles.snob ;

C:\Program Files\CCompilenNINCLUDE*.h

C:\Program Files\CCompileNINCLUDE\SYS*.h

(On your machine the path may be different.)

Since the files specified are located outside tiogept directory, they will not be copied to theget
directory (and we don’t want them to), but any nargaob finds in them will be learned and preserved
(as we want them to).

If we run Snob now, we get a correct obfuscatiop:ma
Obf5\projmap.snob

#Snob Substitution Table for the project "Code"
C0000000B : str

© 2004 MacroExpressionstp://www.macroexpressions.com

Snob: Simple name obfuscator — Tutorial 18

C0000000C
C0000000D
CO0000000E
CO000000F

- BARK_PREFIX

: bark_internal

interval

: BARK_SUFFIX

However, Snob runs very slowly while grinding aléffiles. It may be acceptable if your real third-
party headers are small and few, but we still vafiind a faster way.

7.2 Preserving literal words in all languages: configuration file reserved.snob

Snob recognizes a special filenameserved.snob

, as a configuration file. It has a simple syntax:

each non-empty line is considered a word that mosbe obfuscated. You can have a

reserved.snob

file in any subdirectory of the project directdrge; they all act cumulatively.

Note that this configuration acts on files with axtension known to Snob: if there is a file

filename.ext

We are going to createserved.snob

for whichdot ext .snob was found as described above, and a name in it is
found in one of theeserved.snob

files, it will not be obfuscated.

which captures all the third-party names.

Here is a plan by the example. In the previousafusnob, we made it inspect all third-party names b

including

C:\Program Files\CCompilenNINCLUDE*.h
C:\Program Files\CCompileNINCLUDE\SYS*.h
in APIfiles.snob.

We can as well make Snob inspewty those files. Indeed, let’s imagine that the dioegct

C:\Program Files\CCompileNINCLUDE
just by copying our bare configuration files thesteth.snob

let's run Snob on it:

C:\Snob\snob “C:\Program Files\CCompileNINCLUDE” O

is a project directory. We create a Snob project
anddotc.snob . Having done that,

bf6

The names Snob learned to preserve as APl in thégois run are the names it obfuscated now. They
are, in other words, in the latest obfuscation mapch turns out to be a large file:

Obf6\projmap.snob
#Snob Substitution Table for the project "C:\Progra m
Files\CCompilen\Include"
C00000000: __ACCESS_CONTROL___

C00000001
C00000002

COO0011A0E :

CO0011A0F

CO0011A10:
CO0011A11 :

CO0011A12

CO0025ECS :

CO0025EC4

CO0025ECS :

:_ midl
__cplusplus

get_lowsrc
: put_vrml
get_vrml
put_dynsrc
: get_dynsrc
utimbuf

. _futime
utime

© 2004 MacroExpressionstp://www.macroexpressions.com

Snob: Simple name obfuscator — Tutorial 2C

All the names in this map are the third-party nathas we want preserved. Let's extract them by
removing the first line and from all other linesggything before the name (there are many waysto d
s0). Let's save the resulting file in our Code diogy asreserved.snob

reserved.snob

__ACCESS_CONTROL___

__midl

__cplusplus

get_lowsrc

put_vrml

get_vrml

put_dynsrc

get_dynsrc

utimbuf

_futime

utime

Recall thatreserved.snob contains a list of names which Snob does not abfes regardless of
the filename extension of a file being processeal] anlike thereserved= statement, regardless of
the presence of any particular language in theeptoj

Let’s run Snob on our Bark project again,
C:\Snob\snob Code Obf6

Snob runs faster and we get a different but confeftiscation map:

Obf6\projmap.snob

#Snob Substitution Table for the project "Code"
CO000265F8 : bark

C000265F9 : BARK_PREFIX

CO000265FA : bark_internal

CO000265FB : interval

CO000265FC : BARK_SUFFIX

(Your numbers may be different, depending on thregiter.) The numbers that appear in the
obfuscated names are different from the previowsb$ans because they depend on the order in which
names are encountered, and the additimesérved.snob changed the order.

This technique of creatimgserved.snob from a fake project containing the header files oa
somewhat improved: In many cases, you don't usinalheaders you have in a single project. If you
can estimate what headers you might use, copy thenseparate directory and make a fake Snob
project there. This will significantly reduce theesof the derivedeserved.snob ~ and make Snob
run faster on your real project.

© 2004 MacroExpressionstp://www.macroexpressions.com

Snob: Simple name obfuscator — Tutorial 21

8. Summary

8.1.1 Files that make it to the target directory tree
A file with a namdilename .ext in a project directory tree will have a versiorthie obfuscated
directory tree if:

« thefiledot ext .snob exists in the same directory, or

« thefiledot ext .snob exists somewhere up from that directory in thggutadirectory tree,

or
« thefiledot ext .snob exists in the Snob home directory
Definitions:

The firstdotext.snob found this way is called active configuration fidlename.ext
A file dotext.snob is called active if it is the active configuratifor some file in the project
directory tree.

8.1.2 Files that Snob will not attempt to obfuscate
Snob will not attempt to obfuscate a filename.ext if the file APIfiles.snob exists in

the same directory and mentidilename.ext either directly or as a wildcard match, provided
that the mention contains no directory information.

8.1.3 Names that Snob will not attempt to obfuscate
A name in the fildilename.ext will not be obfuscated if:
« ltis listed in areserved.snob file anywhere in the project directory tree, or
« Itis found inside a match to the regular expressicareserved= statement in some active
dot foo .snob , or
e ltis inside a match to the regular expression kéwwvord= orignore= statement in the

active configuration file fofilename.ext , or

« ltis inside a comment as defined by the activefigaration file forfilename.ext , or

e ltis inside a match to the regular expression sfring= statement in the active
configuration file forfilename.ext , but does not match tim@me= regular expression in

thestring= statement.

8.1.4 Snob configuration files

Filename Language-specific Syntax Keywords
APlfiles.snob No One filespec per line; | -
wildcards allowed

reserved.snob No One word per line -

dot ext .snob Yes <keyword>=<regexp> | use, include,
string, name,
ignore, keyword,
comment, reserved

© 2004 MacroExpressionstp://www.macroexpressions.com

Snob: Simple name obfuscator — Tutorial 22

9. Conclusion

If you reached this point, you got a fair expogior&nob, a simple and efficient name obfuscatas. It
very flexible and independent of your project’'sgnaamming languages.

As we have seen, configuring Snob is quite sinfdbasic configuration for your programming
languages already exists. For those languagesidhadt have Snob configuration yet, we have shown
how to configure Snob from scratch using the syafdanguage-specific configuration files.

If you need to configure Snob for a new language, should be unafraid of regular expressions.
Writing correct regular expressions to define yprogramming language requires attention and some
effort. It's best to start with a toy project exising most idioms of your language and test your
configuration carefully before attempting on a &rgroject. Also, check once in a while
MacroExpressions website to see if there is a ttuted configuration for your programming
language. And if you would like to contribute ydtested!) configuration, please, email to
snob@macroexpressions.com

© 2004 MacroExpressionstp://www.macroexpressions.com

