Unimal: Unified Macro Language

Unimal 2.0

Application note 1

Managing unstructured data layouts from legacy
code

Documentation revision 2.00

Techniques:
Relations between strings and names in Unimal

MacroExpressions
http://www.macroexpressions.com

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 1

Table of contents

MANAGING UNSTRUCTURED DATA LAYOUTS FROM LEGACY CODEccvcvmrmraranunnnns 2
USING SIMPLE NAMES INSTEAD OF STRINGScccctummumusisimmsmssmsnrsasssssnssasnsnsasananas 4
HOW CLOSE ARE NAMES AND STRINGS? ...ciciuuumimimmssmnarasssssssssssssssa s sassssssasssnsnsananas 5

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 2

Managing unstructured data layouts from legacy code

This somewhat weird problem is hard to make up; it appeared in a real application. The
problem has to do with record layouts in the files produced by an older application. As a live
example, consider a flat ASCII file of records, where each record can be mapped to the
following C structure:

struct nyrecord {
char FirstNanel[10];
char Street Addr0O[30] ;
char Last Nane2[16] ;
char StateZ p2[40];

char Street Addr 3[30] ;
char LastNanel[16];
char FirstNanme3[10];
char StateZ p0[40];

char Street Addr 2[30];
char FirstNanmeO[10];
char Last Nane3[16];
char StateZ p3[40];

char StateZ pl[40];
char FirstNanme2[10];
char StreetAddr1[30];
char Last NaneO[16] ;

} d dRecord;

In this example, a record contains information on four items each consisting of the first and
last name, street address and state/ZIP. However, the layout of the record is such that all
parts of an item are found in a strange order and intermixed with parts of other items.

There must have been a good reason why such a layout was implemented. However, now
that the secret of the ancient craft is lost, any processing would rather use an array of four
structures, each representing one item, like this:

struct itemrecord {
char *Fi rst Nane;
char *Last Nane;
char *Street Addr;
char *StateZip;

} NewRecord[4] ;

To make use of the NewRecor d array, we need to initialize all the pointers, like

NewRecor d[0] . Fi r st Nanme=Q dRecor d. Fi r st NaneO0;

NewRecor d[3] . St at eZi p=0 dRecor d. St at eZi p3;

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 3

Doing so by hand is tedious and invites all kinds of errors. However, generating the same
code with Unimal is very straightforward:

#MP Expand O d2New(#@ i r st Nane#, 4)
#MP Expand O d2New(#@.ast Nane#, 4)
#MP Expand O d2New(#@5t r eet Addr #, 4)
#WVWP Expand O d2New(#@5t at eZi p#, 4)

The macro A d2New simply initializes the element named in the string argument for the
number of items given in the second (numeric) argument:

#MP Macro O d2New ; (field_string, item nunber)
#MP For Count =0, #2#-1
NewRecor d[#mp%Count | . #np%s#1# = O dRecor d. #np%#1##np%dCount ;
#WP Endf or
#WMP Endm

All this simple macro does is rendering the translation line the specified number of times.
There the NewRecor d array offset is Count (rendered with #mp% as decimal), which is

also a tag of an item in the O dRecor d. In addition, the NewRecor d item name, which
also is an item name in the O dRecor d (stripped of its tag), is rendered with #np%s as a
string.

That's all we needed to make the translation maintainable. There is a file, old2new.u, in the
folder Samples\AppNotes\1, which implements exactly this. You may want to run it to see
the output.

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 4

Using simple names instead of strings

Notice that all string literals in the example above are single words not starting with a letter.
(It is a “duh!” because they stand for identifiers in the C language - an underscore counts
as a letter.) But that means that they can be Unimal simple names.

So, if you think that the following text:

#MP Expand O d2New(Fi r st Nane, 4)

#MP Expand O d2New(Last Nane, 4)

#MP Expand O d2New(Street Addr, 4)

#MP Expand O d2New(St at eZi p, 4)

- looks simpler, or at least less cluttered, here is an opportunity. Let’s redefine A d2New
to use names instead of strings.

If you think of it, all we used with a string macro argument for is to render it with a %s
format. But the same effect can be achieved by rendering a hame argument with the %n
format! Here is the modified macro:

#MP Macro O d2New ; (fi el d_nanme, item nunber)
#MP For Count =0, #2#-1
NewRecor d[#mp%Count | . #np%n#1# = O dRecor d. #np%m#1##np%dCount ;
#MP Endf or
#MP Endm

The file old2new1.u in Samples\AppNotes\1 illustrates this solution; you may want to try it
and see that the output is the same as before.

© 2000-2006 MacroExpressions http://www.macroexpressions.com

Unimal: Unified Macro Language 5

How close are names and strings?

This simple example also illustrates an important fact: A name can be passed as a macro
argument before it is defined (i.e., assigned a value). Actually, in our example we never
even needed to define the names we used - that’s because we never relied on their values.

Interestingly enough, there is a close relation between names and strings in Unimal:

If S is a string then %sS is a (composite) hame containing the same characters in the same
order as S. In particular, the renderings in the target language interface, #mp%sS and
#mp%n%S produce the same results. Whether or not %sS can be referenced by a simple
name depends on the content of S: it must be a single word.

Conversely, if N is a name, then {N?} is a string containing the same characters in the same
order as N.

This close relation between strings and names allows to do odd things. For instance, the
following:

#MP Setstr S=""

#MP %S=5

assigns a numeric value (5) to a macro parameter with an empty name. The empty name is
a valid composite nhame but since it is not a word, it cannot be used as a simple name
literally:

#MP =5

is a syntax error. However, like any other composite name, it can be a macro argument.
The file oddi t i es. u illustrates this; please, take a look.

© 2000-2006 MacroExpressions http://www.macroexpressions.com

