

Class #347

Page 1 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Data tables (arrays)
• constant within a given build but
• changing during development cycle
• changing among project's twin variants
• changing from year to year in a product line environment.

 Examples of such tables:
• tabulated functions
• recognized communications datagrams
• various lookup tables

Typical applications:
• Consumer electronics
• Automotive controllers
• Home appliances
• Most mass-produced devices
• You name it!

Scope of our interest for 1.5 hours

Class #347

Page 2 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Focus on reuse and maintainability
1. High cost of a software bug
2. Time-to-market considerations
3. Thus, emphasis on reuse of tried-and-true code
4. Code must be easy-to-configure by a project engineer

Variations across and within �model year�:

1. Impede software reuse
2. May require additional code development and therefore
3. Introduce new bugs

Solution:

Treat a project as a member of a parameterized family of projects, whether actual
or envisioned.

In other words, a real software project (i.e., generating production code) is an
instance of an abstract project (equipped with varying parameters) for a fixed set
of parameters.

Class #347

Page 3 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Parameterized projects
• Doing all the development for an abstract project promotes code reuse
• A concrete project is instantiated by �simply� fixing the parameter set.
• New and unforeseen variations are added incrementally thus making the whole

thing manageable.

This is just fine � on paper. Even if there are only scalar parameters, instantiation
can be far from simple.

Example: Tabulating a function

Consider a function that is rather hard to calculate in real time. For our example,
let�s take
 myfunc(x) = 10000*x*/(1+x2), 0≤x≤1,
with integer precision. A common way of coping with this situation is to tabulate
such a function.

Assume that the only parameter varying among projects is the number N+1 of
equidistant points of interpolation. I.e., we want to create an array Myfunc of N+1
elements, whose t-th element is
 10000*(t*N/(t*t+N*N)), t=0,�,N.

Class #347

Page 4 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Requirements
The Myfunc table consists of constant elements once N is fixed.

The Myfunc array must be created automatically, otherwise it is very difficult and
error-prone to maintain. The choices are:
• Calculate the array values at runtime, during system initialization
• Calculate the array values at compile time

Runtime vs. compile time (static) initialization
1. Runtime initialization requires to link in some math support, thus increasing the

code size (=ROM)
2. Runtime initialization slows down system initialization
3. With runtime initialization the table ends up being in RAM even though it is

constant and logically belongs to less scarce ROM

Conclusion: runtime initialization is uniformly worse than compile-time initialization.

The goal should be static initialization of the table.

Class #347

Page 5 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Limitations of high-level languages

Our example�s goal is therefore to reproduce the functionality of the C statement

 for (t=0; t<=N; t++) Myfunc [t] = 10000*(t*N/(t*t+N*N));

at compile time.

To achieve this, static initialization of Myfunc table requires a source code
sprinkled with compiler directives controlling the compiler in some special ways.
Namely,
• We need some kind of a repetition mechanism, or loop, to force the compiler to

re-scan a piece of source code repeatedly
• We need a way to arrange an incrementing compile-time counter (t) to calculate

the values of the table elements.

The availability of these facilities depends solely on the programming
language used.

I don�t know of any HLL with any of these facilities, let alone all of them.

Class #347

Page 6 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Hypothetical Macroassembler (Hypoassembler)

Let�s list some useful language features
• commonly available in various macro assemblers but
• for inexplicable reasons absent from high-level languages.

Assemblers
• are machine-dependent, but
• their macro facilities are not

Syntactical differences in macro languages are just vendors� quirks.

To concentrate on the general techniques rather than peculiarities, we will use a
hypothetical macro assembler (Hypoassembler, for short) whose macro syntax is
summarized below.

Class #347

Page 7 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Macro Definitions and Invocations

Macro is a language construct that allows
• to define a parameterized piece of source code (macro definition) and
• to insert this piece of code with parameters resolved to their actual values

anywhere in the source code (macro invocation)

The process and the result of substitution of a macro invocation with the
appropriately resolved macro definition are often called macro expansion.

Differences between a macro and a function (or subroutine):
• A function call passes actual parameters and control to a separate piece of

code
• A macro invocation produces the necessary code on the spot by cloning its

definition.
• Macro expansions are produced at compile (read: assembly) time, and
• Function calls are made in run time.

Therefore, functions are completely useless in defining constant (ROMable) items,
because they (constants) must be resolved at compile time.

Class #347

Page 8 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Macro Definitions and Invocations (cont�d)

Macros can be used for:
• merely defining constants, but also
• giving those definitions that glossy look that is commonly expected from high-

level languages.

Macro definitions in Hypoassembler have commonly accepted syntax
<macro_name> MACRO <comma_separated_list_of_formal_parameters>
 <macro body>
 ENDM

Macro is invoked by its name with comma-separated list of actual parameters. For
our purposes, an actual parameter can be an arithmetic expression (calculated for
us by assembler) or an alphanumeric string.

Hypoassembler translates macro call by replacing it with the macro body with
formal parameters replaced by actual parameters.

Class #347

Page 9 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Symbolic names

Symbolic names (identifiers) inside the macro body can be a concatenation of
different parts; �&� serves as concatenation operator.

For instance, if macro body contains an identifier x&arg1&arg2 in it, and if actual
parameter arg1 is 123 and arg2 is abc, then the name in the macro expansion will
be x123abc. However, if arg1 were 120+3, then the name�s expansion would be
x120+3abc, which is syntactically incorrect and is not what�s normally intended.

Early evaluation of parameters
To handle this problem, there is a less common feature, so-called �early
evaluation�. If an actual parameter is an expression, it can be prefixed by a �%�
and then the Hypoassembler evaluates it and passes a numeric (say, decimal)
result to the macro instead. In the previous example, if arg1 were %120+3 then
our example name would correctly expand to x123abc.

Class #347

Page 10 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Conditional Assembly
Syntax:
 IF <expression>
 <body>
 ENDIF
Hypoassembler evaluates constant <expression>; text between IF and ENDIF
lines is discarded or literally included if the result is zero or non-zero, respectively.
This construct can be used within macro definitions. Such macro definitions
produce different macro expansions depending on actual parameters and / or
place of invocation.

Class #347

Page 11 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Repeated scanning of the source code

The following construct is a means of arranging a compile-time loop:
 REPT <expression>
 <body>
 ENDR
Hypoassembler evaluates <expression> and includes as many copies of <body>
in the source file. The net effect is that <body> is scanned the <expression>
number of times.

The REPT construct is extremely powerful when combined with conditional
assembly (whether folded in macros or not). The key is that combining assembler
directives with conditional assembly in a REPT loop, we can write an Assembler
source file that is at the same time a sophisticated program to control the behavior
of the Assembler!

Important addition:
 EXITR � breaks the REPT/ENDR loop.

Class #347

Page 12 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Assignments
The following syntax allows assigning a value of an expression to a symbolic
variable:

<name> SET <expression>

Important: the <expression> can use the <name>, so it is possible to arrange a
compile-time counter, e.g.,

S SET S+1

Allocating memory for constant data

For simplicity, we will assume only one data type good for holding integers and
addresses; the directive to allocate it at the current program counter is DC.
Syntax:
 DC <expression>

Class #347

Page 13 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Controlling the location counter (a.k.a. program counter)

The current value of the location counter is available to the programmer as �$�.

We can change the position of the program counter at will using the ORG
directive. Syntax:
 ORG <expression>

Class #347

Page 14 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

 Tabulated function myfunc in Hypoassembler

Myfunc:
t SET 0

REPT N+1 ;remember, N is constant
DC 10000*N*t/(N*N+t*t)

t SET t+1
ENDR

Class #347

Page 15 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Making it reusable
1. Let�s wrap in a macro the implementation of the function to be tabulated

myfunc MACRO t, Size
DC 10000*Size*t/(Size*Size+t*t)
ENDM

2. Let�s wrap the generator of the table in a macro

FuncTable MACRO Size, Func
_&Func&_tab:
t SET 0

REPT Size+1 ;remember, Size is constant
Func t, Size

t SET t+1
ENDR
ENDM

3. Now, we have a reusable component. E.g., the original myfunc is generated as
the table _myfunc_tab by

FuncTable N, myfunc

Class #347

Page 16 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Discussion

1. The solution doesn�t have terrifying look of assembly code
2. Maintenance is straightforward on two levels:
2.1. The person maintaining the project simply specifies the N, and
2.2. The person maintaining the algorithm component using myfunc function

modifies the myfunc macro as needed.
3. These two persons may or may not be one.

Class #347

Page 17 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Maintainability of sparse tables
Consider, for the example, a sparse table of 32 entries, where significant entries
are references to A1�A4:

A1 at offset 9
A2 at offset 11
A3 at offset 24
A4 at offset 27

All other entries are �don�t care.�

Using NULL or 0 for �don�t care� entries, we can write something like this:

const ob_type * const Table[] =
{NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,&A1,NULL,
&A2,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,
NULL,NULL,&A3,NULL,NULL,&A4,NULL,NULL,NULL,NULL};

Table:
 DC 0,0,0,0,0,0,0,0,0
 DC A1,0,A2,0,0,0,0,0,0
 DC 0,0,0,0,0,0,A3,0,0,A4,0,0,0,0

Unreadable, not maintainable and error-prone!

Hypoassembler:

C:

Class #347

Page 18 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Maintainability Goals
1. Supply only significant entries of the table. Don�t care about �don�t care� entries.
2. Allow listing significant entries in arbitrary order.
3. Reduce maintenance to editing (adding, removing) significant entries
4. Save ROM by chopping off leading and trailing �don�t care� entries of the table.

First implementation in Hypoassembler

Goals 1 and 2 and 3 are met (sort of).

Table:
ORG Table+11

DC A2
ORG Table+9

DC A1
ORG Table+27

DC A4
ORG Table+24

DC A3
ORG Table+32 ;position the LC past the table

Class #347

Page 19 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Cosmetic improvement:
For a nicer look, let�s use the following macros:

StartLocateTable MACRO _table
_table:
__DefaultTableName SET _table

ENDM

LocateElement MACRO _offset, _value

ORG __DefaultTableName + _offset
DC _value

ENDM

Locates a _value at
_offset from the
current default table

Defines default table
and locates the
beginning of the table

This is much better.
Still,
• need to position the location

counter past the table.
• Also, no ROM savings yet

StartLocateTable Table
LocateElement 11, A2
LocateElement 9, A1
LocateElement 27, A4
LocateElement 24, A3
ORG Table+32

Class #347

Page 20 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Second implementation

Table: ORG $-9
ORG Table+11

DC A2
ORG Table+9

DC A1
ORG Table+27

DC A4
ORG Table+24

DC A3
ORG Table+27+1 ;position the LC past the last

; significant entry

What we did:
1. Overlapped the 9 leading �don�t care� entries with preceding code or data.
2. Overlapped the 4 trailing �don�t care� entries with subsequent code or data.

Class #347

Page 21 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Automating the second implementation

We need to know in advance:
1. The number of leading �don�t care� entries (= min offset of a significant entry)
2. The position of the location counter past the last significant entry (1 greater than

max offset of a significant entry)

Targeting two-pass implementation:
Pass 1. Calculate min and max offsets of significant entries
Pass 2. Locate the table.

Class #347

Page 22 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Target implementation:

Notes:
1. REPT/ENDR cannot be portably folded in macros, so they remain exposed.
2. The new elements of the table definition (in red) can be treated as fixed

incantations.
3. The target implementation meets the goals we set: maintainability and ROM

savings

PrepareLocateTable
REPT 2
StartLocateTable Table
LocateElement 11, A2
LocateElement 9, A1
LocateElement 27, A4
LocateElement 24, A3
ENDR
EndLocateTable

Class #347

Page 23 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Building blocks

Minimum MACRO
Current, New
IF New<Current
Current SET New
ENDIF

ENDM

PrepareLocateTable MACRO
__Pass SET 0
MinOffset SET 10000 ;very large number
MaxOffset SET 0

ENDM

Helper macro calculating current
minimum. Current must be pre-
initialized to a large number.

Maximum is similar.

Loop
initialization
(new macro)

EndLocateTable MACRO
ORG

__DefaultTableName+MaxOffset+1
ENDM

Positioning the
location counter
past the table
(new macro)

Class #347

Page 24 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

StartLocateTable MACRO _table
__Pass SET __Pass+1
IF __Pass=2

ORG $-MinOffset
_table:
__DefaultTableName SET _table
ENDIF

ENDM

LocateElement MACRO _offset, _value
IF __Pass=1
Minimum MinOffset, _offset
Maximum MaxOffset, _offset

ENDIF
IF __Pass=2

ORG __DefaultTableName + _offset
DC _value

ENDIF
ENDM

Redefined
LocateElement
for the two-pass
strategy

Redefined
StartLocateTable
for the two-pass
strategy

Class #347

Page 25 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Generating the lookup table automatically

Goal: To generate lookup tables for tables of any objects completely
automatically, to require no maintenance at all.
Framework: Objects are defined by existing macro DefineOb taking the key
and �other arguments� as arguments.

Example:

Observe that the sparse table from our example is also the lookup table for the
table of objects ObTable. But now it contains only data that can be calculated
from the ObTable, so it potentially can be hidden from the application
programmer. When the ObTable changes, so does the lookup table, but it will be
transparent to the user!

ObTable:
A2: DefineOb 11, <arguments1>
A1: DefineOb 9, <arguments3>
A4: DefineOb 27, <arguments2>
A3: DefineOb 24, <arguments4>

Labels A1�A4
are not needed
other than for
our reference.

Class #347

Page 26 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Approach to implementation

 �Extended� DefineOb macro, ExtDefineOb, combines DefineOb and
LocateElement macros.

ObTable:
PrepareLocateTable
REPT 2
StartLocateTable LookupForObTable

ExtDefineOb 11, <arguments1>
ExtDefineOb 27, <arguments2>
ExtDefineOb 9, <arguments3>
ExtDefineOb 24, <arguments4>

ENDR
EndLocateTable

To generate lookup
table (named here

LookupForObTable),
we may use the same
prefix and suffix code
(underlined) as before,
for the stand-alone
sparse table.

Class #347

Page 27 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Implementation: Method 1

Unique label is calculated for each object. The method requires name catenation.

In Pass 1, objects are allocated and MinOffset and MaxOffset are calculated.
In Pass 2, the lookup table is generated.

ExtDefineOb MACRO key, <arguments>
IF __Pass=1

ObPosition_&key:
DefineOb key, <arguments>

ENDIF
LocateElement key, ObPosition_&key

ENDM

The labels are
ObPosition_9,
etc.

Class #347

Page 28 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Implementation: Method 2
Instead of labeling each object individually, let�s reference them by ordinal number
of their occurrence, ItemNum.
We must add

ItemNum SET 0
to the macro StartLocateTable.

Lookup table is generated to contain indices (rather than pointers) to the objects.

ExtDefineOb MACRO key, <arguments>
IF __Pass=1
DefineOb key, <arguments>

ENDIF
LocateElement key, ItemNum

ItemNum SET ItemNum + 1 ;count current number
ENDM

Class #347

Page 29 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Test drive
Let�s compare the manually created lookup table against the automatically
generated one.

ObTable:
A2: DefineOb 11, <arguments1>
A1: DefineOb 9, <arguments3>
A4: DefineOb 27, <arguments2>
A3: DefineOb 24, <arguments4>

LookupForObTable:
DC 0,0,0,0,0,0,0,0,0
DC A1,0,A2,0,0,0,0,0,0
DC 0,0,0,0,0,0,A3,0,0,A4,0,0,0,0

The original table
of objects and the
corresponding
lookup table,
created manually

Class #347

Page 30 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

ObTable:
ObPosition_11: DefineOb 11, <arguments1>
ObPosition_9: DefineOb 9, <arguments3>
ObPosition_27: DefineOb 27, <arguments2>
ObPosition_24: DefineOb 24, <arguments4>

ORG $-9
LookupForObTable:

ORG LookupForObTable+11
DC ObPosition_11
ORG LookupForObTable+9
DC ObPosition_9
ORG LookupForObTable+27
DC ObPosition_27
ORG LookupForObTable+24
DC ObPosition_24
ORG LookupForObTable+27+1

Automatically
generated
lookup table
using
method 1

Class #347

Page 31 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Summary of our achievements

1. We do not enter the lookup table manually; the Assembler builds it for us
automatically.

2. Automatically built lookup table is more ROM-efficient than the one entered
manually.

3. Item 1 not only saves us typing; it saves much more in code maintenance.
4. The macros we came up with depend very little on the example at hand; they

can be reused almost 1:1 in different circumstances.
5. These macros do not depend on the target machine instruction set, so

portability issues have to do only with differences in macro languages among
assemblers.

Class #347

Page 32 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Further improvements � splitting the key

TableH:
0

Previous data or
code

1
2 Table2
3
4

5 Table2
6 Table6 0
7 1 A1

2

3 A2 Table6

0 A3
1
2

3 A4
Subsequent data or code

Splitting the key into two parts
9 = 01001B � (010B, 01B) = (2,1)
11=01011B � (010B, 11B) = (2,3)
24=11000B � (110B, 00B) = (6,0)
27=11011B � (110B, 11B) = (6,3)

TableH = {0, 0, Table2, 0, 0, 0, Table6, 0}

Table2 = {0, A1, 0, A2}
Table6 = {A3, 0, 0, A4}.

Class #347

Page 33 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Further improvements � merging separate tables

TableH:
0

Previous
data or

1 Table2 code
2 Table2 0
3 1 A1 Table6
4 2 0 A3
5 3 A2 1
6 Table6 2
7

3 A4

Subsequent data or code

Separate tables can be intertwined so that
significant entries of one table fall in the �holes�
of other tables.
This can be achieved by moving tables� origins
and allocating one table at a time when
possible.
Macroassembler implementation produces
(without print controls) a tremendous listing file.
Assembling may take noticeable time.
The assembler must be good at memory/swap
file management, so there are certain
requirements to the host computer platform.

Class #347

Page 34 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Target implementation
ObTable:

PrepareLocateTable
REPT 100000 ;really large number
StartLocateTable LookupForObTable

ExtDefineOb 11, <arguments1>
ExtDefineOb 27, <arguments2>
ExtDefineOb 9, <arguments3>
ExtDefineOb 24, <arguments4>

ENDR
EndLocateTable

A guessed large repetition number is required to provide for iterative process.
Other than that, the application programmer sees no differences in her table of
objects.

Class #347

Page 35 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Merging the tables � a sketch of implementation

A two-pass process followed by an iterative process.
♦ The two-pass process allocates the table of objects and the �hash� (primary

lookup) table ala simple single-level lookup table generation. In addition, min
and max offsets of all (secondary) lookup tables are calculated.
 Note 1: since the hash table contains references to the lookup tables that
are not yet allocated, the assembler must support forward references, so single-
pass assemblers will not do. (A different implementation is possible though.)
 Note 2: care must be taken not to attempt to allocate the same entry of
the hash table more than once (since �digests� do repeat).

♦ The iterative process:

1. shifts the next prospective allocation position of remaining secondary tables
2. for each secondary table checks whether it has collisions with already
allocated tables
3. if a �good� secondary table is found, it is allocated at the current shift offset
from the common beginning and marked as allocated. If no more tables remain,
end, otherwise, repeat the process.

Class #347

Page 36 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

Caveats

1. For the iterative process, the REPT statement must have sufficiently large
number. Experimentation is required as well as error control (not all tables
allocated after all assembler passes are over).

2. To avoid empty passes (after all tables are allocated) use EXITR or equivalent
(whenever available) to exit the re-scanning. Otherwise it translates to
increased assembly time.

Class #347

Page 37 of 37

 Managing constant data tables in ROMable apps

©
20

00
M

ac
ro

E
xp

re
ss

io
n

s
ht

tp
://

w
w

w
.m

ac
ro

ex
pr

es
si

on
s.c

om

An option for high-level languages and simpler assemblers
Tricks with macros shown here are a serendipitous by-product of macro facilities
of good assemblers. The resulting code produces enormously long listing file with
very spare occurrences of code-generating lines. Usually, thorough listing control
statements are advised.

Consistent solutions for high-level languages are available with a tool called
UnimalUnimalUnimalUnimal (for UNIfied MAcro Language). It handles the static initialization tasks
independently of the target language. (Please, visit www.macroexpressions.com.)
It allows to:
• Perform complex compile-time configuration
• Reduce maintenance complexity of your code
• Put in ROM what you had to configure in runtime before.
• Reduce memory requirements of your project

Additionally, it allows to:
• Do more sophisticated arithmetic on parameters at compile time
• Export and share parameters between different languages (e.g., between C,

FORTRAN, Assembler and the make utility)

